RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2003, Volume 39, Issue 2, Pages 29–35 (Mi ppi215)  

This article is cited in 1 scientific paper (total in 1 paper)

Information Theory and Coding Theory

New Quasi-Cyclic Degenerate Linear Codes over $GF(8)$

R. N. Daskalov, P. V. Hristov


Abstract: Let $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$, and minimum Hamming distance $d$ over $GF(q)$. One of the most important problems in coding theory is to construct codes with best possible minimum distances. Recently, quasi-cyclic (QC) codes were proved to contain many such codes. In this paper, twenty-five new codes over $GF(8)$ are constructed, which improve the best known lower bounds on minimum distance.

Full text: PDF file (751 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2003, 39:2, 184–190

Bibliographic databases:

UDC: 621.391.15
Received: 18.04.2002
Revised: 23.01.2003

Citation: R. N. Daskalov, P. V. Hristov, “New Quasi-Cyclic Degenerate Linear Codes over $GF(8)$”, Probl. Peredachi Inf., 39:2 (2003), 29–35; Problems Inform. Transmission, 39:2 (2003), 184–190

Citation in format AMSBIB
\Bibitem{DasHri03}
\by R.~N.~Daskalov, P.~V.~Hristov
\paper New Quasi-Cyclic Degenerate Linear Codes over $GF(8)$
\jour Probl. Peredachi Inf.
\yr 2003
\vol 39
\issue 2
\pages 29--35
\mathnet{http://mi.mathnet.ru/ppi215}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2105859}
\zmath{https://zbmath.org/?q=an:1088.94022}
\transl
\jour Problems Inform. Transmission
\yr 2003
\vol 39
\issue 2
\pages 184--190
\crossref{https://doi.org/10.1023/A:1025100305167}


Linking options:
  • http://mi.mathnet.ru/eng/ppi215
  • http://mi.mathnet.ru/eng/ppi/v39/i2/p29

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. I. Koshelev, “Non-split toric codes”, Problems Inform. Transmission, 55:2 (2019), 124–144  mathnet  crossref  crossref  isi  elib
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:259
    Full text:93
    References:20
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020