RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2016, Volume 52, Issue 1, Pages 8–15 (Mi ppi2193)  

Coding Theory

Upper bound on the minimum distance of LDPC codes over $GF(q)$ based on counting the number of syndromes

A. A. Frolov

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia

Abstract: In [1] a syndrome counting based upper bound on the minimum distance of regular binary LDPC codes is given. In this paper we extend the bound to the case of irregular and generalized LDPC codes over $GF(q)$. A comparison with the lower bound for LDPC codes over $GF(q)$, upper bound for the codes over $GF(q)$, and the shortening upper bound for LDPC codes is made. The new bound is shown to lie under the Gilbert–Varshamov bound at high rates.

Funding Agency Grant Number
Russian Science Foundation 14-50-00150
The research was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.


Full text: PDF file (190 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2016, 52:1, 6–13

Bibliographic databases:

UDC: 621.391.15
Received: 19.03.2015
Revised: 17.11.2015

Citation: A. A. Frolov, “Upper bound on the minimum distance of LDPC codes over $GF(q)$ based on counting the number of syndromes”, Probl. Peredachi Inf., 52:1 (2016), 8–15; Problems Inform. Transmission, 52:1 (2016), 6–13

Citation in format AMSBIB
\Bibitem{Fro16}
\by A.~A.~Frolov
\paper Upper bound on the minimum distance of LDPC codes over $GF(q)$ based on counting the number of syndromes
\jour Probl. Peredachi Inf.
\yr 2016
\vol 52
\issue 1
\pages 8--15
\mathnet{http://mi.mathnet.ru/ppi2193}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3512905}
\elib{http://elibrary.ru/item.asp?id=28876225}
\transl
\jour Problems Inform. Transmission
\yr 2016
\vol 52
\issue 1
\pages 6--13
\crossref{https://doi.org/10.1134/S0032946016010026}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000376106900002}
\elib{http://elibrary.ru/item.asp?id=27153525}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84966309352}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2193
  • http://mi.mathnet.ru/eng/ppi/v52/i1/p8

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:197
    Full text:33
    References:21
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020