RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2016, Volume 52, Issue 2, Pages 86–110 (Mi ppi2207)  

This article is cited in 2 scientific papers (total in 2 papers)

The International Dobrushin Prize

Queueing networks with mobile servers: the mean-field approach

F. Baccellia, A. N. Rybkob, S. B. Shlosmanbcd

a Department of Mathematics, University of Texas at Austin, Austin, USA
b Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
c Le Centre de Physique Théorique, Aix-Marseille Université, Marseille, France
d Université de Toulon, La Garde, France

Abstract: We consider queueing networks which are made from servers exchanging their positions on a graph. When two servers exchange their positions, they take their customers with them. Each customer has a fixed destination. Customers use the network to reach their destinations, which is complicated by movements of the servers. We develop the general theory of such networks and establish the convergence of the symmetrized version of such a network to some nonlinear Markov process.

Funding Agency Grant Number
Russian Science Foundation 14-50-00150
Agence Nationale de la Recherche ANR-11-LABX-0033
University foundation AMIDEX ANR-11-IDEX-0001-02
The results of Sections 3–5 were obtained at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.
Supported in part by the Labex Archimede (ANR-11-LABX-0033) and the A$^*$MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d'Avenir” French Government programme managed by the French National Research Agency (ANR).


Full text: PDF file (348 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2016, 52:2, 178–199

Bibliographic databases:

UDC: 621.391
Received: 17.08.2015
Revised: 12.01.2016

Citation: F. Baccelli, A. N. Rybko, S. B. Shlosman, “Queueing networks with mobile servers: the mean-field approach”, Probl. Peredachi Inf., 52:2 (2016), 86–110; Problems Inform. Transmission, 52:2 (2016), 178–199

Citation in format AMSBIB
\Bibitem{BacRybShl16}
\by F.~Baccelli, A.~N.~Rybko, S.~B.~Shlosman
\paper Queueing networks with mobile servers: the mean-field approach
\jour Probl. Peredachi Inf.
\yr 2016
\vol 52
\issue 2
\pages 86--110
\mathnet{http://mi.mathnet.ru/ppi2207}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3592237}
\elib{http://elibrary.ru/item.asp?id=27084146}
\transl
\jour Problems Inform. Transmission
\yr 2016
\vol 52
\issue 2
\pages 178--199
\crossref{https://doi.org/10.1134/S0032946016020071}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000379926700007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84978863251}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2207
  • http://mi.mathnet.ru/eng/ppi/v52/i2/p86

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Vladimirov, S. A. Pirogov, A. N. Rybko, S. B. Shlosman, “Propagation of chaos and Poisson hypothesis”, Problems Inform. Transmission, 54:3 (2018), 290–299  mathnet  crossref  isi  elib
    2. F. Baccelli, A. Rybko, S. Shlosman, A. Vladimirov, “Metastability of queuing networks with mobile servers”, J. Stat. Phys., 173:3-4, SI (2018), 1227–1251  crossref  mathscinet  zmath  isi  scopus
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:203
    Full text:12
    References:20
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020