RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2017, Volume 53, Issue 3, Pages 23–29 (Mi ppi2240)  

Information Theory

A note on random coding bounds for classical-quantum channels

M. Dalai

Department of Information Engineering, University of Brescia, Brescia, Italy

Abstract: A modified derivation of achievability results in classical-quantum channel coding theory is proposed, which has, in our opinion, two main benefits over previously used methods: it allows to (i) follow in a simple and clear way how binary hypothesis testing relates to channel coding achievability results, and (ii) derive in a unified way all previously known random coding achievability bounds on error exponents for classical and classical-quantum channels.

Funding Agency Grant Number
Italian Ministry of Education, University and Research PRIN 2015 D72F1600079000
Partially supported by the Italian Ministry of Education under grant PRIN 2015 D72F1600079000.


Full text: PDF file (135 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2017, 53:3, 222–228

Bibliographic databases:

Document Type: Article
UDC: 621.391.1+519.2
Received: 14.03.2017
Revised: 10.04.2017

Citation: M. Dalai, “A note on random coding bounds for classical-quantum channels”, Probl. Peredachi Inf., 53:3 (2017), 23–29; Problems Inform. Transmission, 53:3 (2017), 222–228

Citation in format AMSBIB
\Bibitem{Dal17}
\by M.~Dalai
\paper A note on random coding bounds for classical-quantum channels
\jour Probl. Peredachi Inf.
\yr 2017
\vol 53
\issue 3
\pages 23--29
\mathnet{http://mi.mathnet.ru/ppi2240}
\elib{http://elibrary.ru/item.asp?id=29966407}
\transl
\jour Problems Inform. Transmission
\yr 2017
\vol 53
\issue 3
\pages 222--228
\crossref{https://doi.org/10.1134/S0032946017030036}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000412936700003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031712467}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2240
  • http://mi.mathnet.ru/eng/ppi/v53/i3/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:46
    References:7
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018