RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2018, Volume 54, Issue 2, Pages 45–72 (Mi ppi2266)  

This article is cited in 7 scientific papers (total in 7 papers)

Large Systems

Improved Frankl–Rödl theorem and some of its geometric consequences

A. A. Sagdeev

Laboratory of Advanced Combinatorics and Network Applications, Moscow Institute of Physics and Technology (State University), Moscow, Russia

Abstract: We substantially improve a presently known explicit exponentially growing lower bound on the chromatic number of a Euclidean space with forbidden equilateral triangle. Furthermore, we improve an exponentially growing lower bound on the chromatic number of distance graphs with large girth. These refinements are obtained by improving known upper bounds on the product of cardinalities of two families of homogeneous subsets with one forbidden cross-intersection.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00355
Ministry of Education and Science of the Russian Federation НШ-6760.2018.1
Supported in part by the Russian Foundation for Basic Research, project no. 18-01-00355, and the President of the Russian Federation Council for State Support of Leading Scientific Schools, grant no. NSh-6760.2018.1.


Full text: PDF file (342 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2018, 54:2, 139–164

Bibliographic databases:

UDC: 621.391.1+519.1
Received: 18.07.2017
Revised: 27.12.2017

Citation: A. A. Sagdeev, “Improved Frankl–Rödl theorem and some of its geometric consequences”, Probl. Peredachi Inf., 54:2 (2018), 45–72; Problems Inform. Transmission, 54:2 (2018), 139–164

Citation in format AMSBIB
\Bibitem{Sag18}
\by A.~A.~Sagdeev
\paper Improved Frankl--R\"odl theorem and some of its geometric consequences
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 2
\pages 45--72
\mathnet{http://mi.mathnet.ru/ppi2266}
\elib{http://elibrary.ru/item.asp?id=35768874}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 2
\pages 139--164
\crossref{https://doi.org/10.1134/S0032946018020047}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000438828500004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049976987}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2266
  • http://mi.mathnet.ru/eng/ppi/v54/i2/p45

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Sagdeev, “Exponentially Ramsey sets”, Problems Inform. Transmission, 54:4 (2018), 372–396  mathnet  crossref  isi  elib
    2. A. A. Sagdeev, “O khromaticheskikh chislakh, sootvetstvuyuschikh eksponentsialno ramseevskim mnozhestvam”, Kombinatorika i teoriya grafov. X, Zap. nauchn. sem. POMI, 475, POMI, SPb., 2018, 174–189  mathnet
    3. L. I. Bogolubsky, A. M. Raigorodskii, “A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics $\ell_1$ and $\ell_2$”, Math. Notes, 105:2 (2019), 180–203  mathnet  crossref  crossref  isi  elib
    4. Ph. A. Pushnyakov, “The Number of Edges in Induced Subgraphs of Some Distance Graphs”, Math. Notes, 105:4 (2019), 582–591  mathnet  crossref  crossref  isi  elib
    5. R. I. Prosanov, “Counterexamples to Borsuk's Conjecture with Large Girth”, Math. Notes, 105:6 (2019), 874–880  mathnet  crossref  crossref  isi  elib
    6. A. A. Sagdeev, “On the Partition of an Odd Number into Three Primes in a Prescribed Proportion”, Math. Notes, 106:1 (2019), 98–107  mathnet  crossref  crossref  isi  elib
    7. F. A. Pushnyakov, A. M. Raigorodskii, “Otsenka chisla reber v osobykh podgrafakh nekotorogo distantsionnogo grafa”, Matem. zametki, 107:2 (2020), 286–298  mathnet  crossref
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:121
    References:12
    First page:12

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020