RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2018, Volume 54, Issue 3, Pages 102–111 (Mi ppi2277)  

Communication Network Theory

Propagation of chaos and Poisson hypothesis

A. A. Vladimirova, S. A. Pirogova, A. N. Rybkoa, S. B. Shlosmanabc

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b Skolkovo Institute of Science and Technology, Moscow, Russia
c Aix Marseille Université, Université de Toulon, CNRS, CPT, Marseille, France

Abstract: We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.

Funding Agency Grant Number
Russian Science Foundation 14-50-00150
17-11-010980
Agence Nationale de la Recherche ANR-11-LABX-0033
ANR-11-IDEX-0001-02
The research of A. Rybko and A. Vladimirov (the results of Sections 35) was carried out at the Institute for Information Transmission Problems of the Russian Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.
The research of S. Pirogov, presented in Section 6, was carried out at the expense of the Russian Science Foundation, project no. 17-11-01098.
The work of S. Shlosman, presented in Sections 12, was performed in the framework of the Labex Archimede (ANR-11-LABX-0033) and the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the Investissements dAvenir French Government programme managed by the French National Research Agency (ANR); it was also supported by the Grant PRC no. 1556 CNRS-RFBR 20172019 Multidimensional semi-classical problems of condensed matter physics and quantum mechanics.


Full text: PDF file (219 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2018, 54:3, 290–299

Bibliographic databases:

UDC: 621.391.1:519.2
Received: 21.10.2016
Revised: 25.04.2018

Citation: A. A. Vladimirov, S. A. Pirogov, A. N. Rybko, S. B. Shlosman, “Propagation of chaos and Poisson hypothesis”, Probl. Peredachi Inf., 54:3 (2018), 102–111; Problems Inform. Transmission, 54:3 (2018), 290–299

Citation in format AMSBIB
\Bibitem{VlaPirRyb18}
\by A.~A.~Vladimirov, S.~A.~Pirogov, A.~N.~Rybko, S.~B.~Shlosman
\paper Propagation of chaos and Poisson hypothesis
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 3
\pages 102--111
\mathnet{http://mi.mathnet.ru/ppi2277}
\elib{http://elibrary.ru/item.asp?id=38642571}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 3
\pages 290--299
\crossref{https://doi.org/10.1134/S0032946018030080}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000448436900008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054880839}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2277
  • http://mi.mathnet.ru/eng/ppi/v54/i3/p102

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  •   Problems of Information Transmission
    Number of views:
    This page:59
    References:19
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020