RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2018, Volume 54, Issue 4, Pages 35–50 (Mi ppi2279)  

Coding Theory

Refinements of Levenshtein bounds in $q$-ary Hamming spaces

P. Boyvalenkovab, D. Danevc, M. Stoyanovad

a Faculty of Engineering, South-Western University, Blagoevgrad, Bulgaria
b Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
c Department of Electrical Engineering and Department of Mathematics, Linköping University, Linköping, Sweden
d Faculty of Mathematics and Informatics, Sofia University, Sofia, Bulgaria

Abstract: We develop refinements of the Levenshtein bound in $q$-ary Hamming spaces by taking into account the discrete nature of the distances versus the continuous behavior of certain parameters used by Levenshtein. We investigate the first relevant cases and present new bounds. In particular, we derive generalizations and $q$-ary analogs of the MacEliece bound. Furthermore, we provide evidence that our approach is as good as the complete linear programming and discuss how faster are our calculations. Finally, we present a table with parameters of codes which, if exist, would attain our bounds.

Funding Agency Grant Number
Bulgarian National Science Fund DN02/2-13.12.2016
Swedish Research Council
Supported in part by the Bulgarian NSF, contract DN02/2-13.12.2016.
Supported in part by the Swedish Research Council (VR) and ELLIIT.


Full text: PDF file (279 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2018, 54:4, 329–342

Bibliographic databases:

UDC: 621.391.15
Received: 17.12.2017
Revised: 16.05.2018
Accepted:10.08.2018

Citation: P. Boyvalenkov, D. Danev, M. Stoyanova, “Refinements of Levenshtein bounds in $q$-ary Hamming spaces”, Probl. Peredachi Inf., 54:4 (2018), 35–50; Problems Inform. Transmission, 54:4 (2018), 329–342

Citation in format AMSBIB
\Bibitem{BoyDanSto18}
\by P.~Boyvalenkov, D.~Danev, M.~Stoyanova
\paper Refinements of Levenshtein bounds in $q$-ary Hamming spaces
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 4
\pages 35--50
\mathnet{http://mi.mathnet.ru/ppi2279}
\elib{http://elibrary.ru/item.asp?id=38911275}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 4
\pages 329--342
\crossref{https://doi.org/10.1134/S0032946018040026}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000456991400002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060799558}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2279
  • http://mi.mathnet.ru/eng/ppi/v54/i4/p35

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:50
    References:9
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019