RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2018, Volume 54, Issue 4, Pages 51–59 (Mi ppi2280)  

Coding Theory

On the complexity of Fibonacci coding

I. S. Sergeev

Federal State Unitary Enterprise Kvant Scientific Research Institute, Moscow, Russia

Abstract: We show that converting an $n$-digit number from a binary to Fibonacci representation and backward can be realized by Boolean circuits of complexity $O(M(n)\log n)$, where $M(n)$ is the complexity of integer multiplication. For a more general case of $r$-Fibonacci representations, the obtained complexity estimates are of the form $2^{O(\sqrt{\log n})}n$.

Funding Agency Grant Number
Russian Foundation for Basic Research 17-01-00485_
Supported in part by the Russian Foundation for Basic Research, project no. 17-01-00485.


Full text: PDF file (198 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2018, 54:4, 343–350

Bibliographic databases:

UDC: 621.391.15:519.72
Received: 30.05.2018
Revised: 30.05.2018
Accepted:18.09.2018

Citation: I. S. Sergeev, “On the complexity of Fibonacci coding”, Probl. Peredachi Inf., 54:4 (2018), 51–59; Problems Inform. Transmission, 54:4 (2018), 343–350

Citation in format AMSBIB
\Bibitem{Ser18}
\by I.~S.~Sergeev
\paper On the complexity of Fibonacci coding
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 4
\pages 51--59
\mathnet{http://mi.mathnet.ru/ppi2280}
\elib{http://elibrary.ru/item.asp?id=38647210}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 4
\pages 343--350
\crossref{https://doi.org/10.1134/S0032946018040038}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000456991400003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060766110}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2280
  • http://mi.mathnet.ru/eng/ppi/v54/i4/p51

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  •   Problems of Information Transmission
    Number of views:
    This page:59
    References:15
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019