|
This article is cited in 1 scientific paper (total in 1 paper)
Large Systems
On a Frankl–Wilson Theorem
A. A. Sagdeev Laboratory of Advanced Combinatorics and Network Applications,
Moscow Institute of Physics and Technology (State University), Moscow, Russia
Abstract:
We derive an analog of the Frankl–Wilson theorem on independence numbers of some distance graphs. The obtained results are applied to the problem of the chromatic number of a space $\mathbb{R}^n$ with a forbidden equilateral triangle and to the problem of chromatic numbers of distance graphs with large girth.
Keywords:
distance graph, Frankl–Wilson theorem, Frankl–Rödl theorem, chromatic number, Euclidean Ramsey theory, girth.
DOI:
https://doi.org/10.1134/S0134347519040041
Full text:
PDF file (301 kB)
First page: PDF file
References:
PDF file
HTML file
English version:
Problems of Information Transmission, 2019, 55:4, 376–395
Bibliographic databases:
UDC:
629.391.1 : 519.1 Received: 02.07.2019 Revised: 09.10.2019 Accepted:12.11.2019
Citation:
A. A. Sagdeev, “On a Frankl–Wilson Theorem”, Probl. Peredachi Inf., 55:4 (2019), 86–106; Problems Inform. Transmission, 55:4 (2019), 376–395
Citation in format AMSBIB
\Bibitem{Sag19}
\by A.~A.~Sagdeev
\paper On a Frankl--Wilson Theorem
\jour Probl. Peredachi Inf.
\yr 2019
\vol 55
\issue 4
\pages 86--106
\mathnet{http://mi.mathnet.ru/ppi2305}
\crossref{https://doi.org/10.1134/S0134347519040041}
\elib{https://elibrary.ru/item.asp?id=39180352}
\transl
\jour Problems Inform. Transmission
\yr 2019
\vol 55
\issue 4
\pages 376--395
\crossref{https://doi.org/10.1134/S0032946019040045}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000520150600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078214323}
Linking options:
http://mi.mathnet.ru/eng/ppi2305 http://mi.mathnet.ru/eng/ppi/v55/i4/p86
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. B. Kupavskii, A. A. Sagdeev, “Ramsey theory in the $n$-space with Chebyshev metric”, Russian Math. Surveys, 75:5 (2020), 965–967
|
Number of views: |
This page: | 91 | References: | 6 | First page: | 11 |
|