RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2007, Volume 43, Issue 4, Pages 51–67 (Mi ppi27)  

This article is cited in 4 scientific papers (total in 4 papers)

Large Systems

On Quasi-successful Couplings of Markov Processes

M. L. Blank, S. A. Pirogov

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: The notion of a successful coupling of Markov processes, based on the idea that both components of a coupled system “intersect” in finite time with probability 1, is extended to cover situations where the coupling is not necessarily Markovian and its components only converge (in a certain sense) to each other with time. Under these assumptions the unique ergodicity of the original Markov process is proved. The price for this generalization is the weak convergence to the unique invariant measure instead of the strong convergence. Applying these ideas to infinite interacting particle systems, we consider even more involved situations where the unique ergodicity can be proved only for a restriction of the original system to a certain class of initial distributions (e.g., translation-invariant). Questions about the existence of invariant measures with a given particle density are also discussed.

Full text: PDF file (2181 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2007, 43:4, 316–330

Bibliographic databases:

UDC: 621.391.1:519.2
Received: 14.02.2007
Revised: 10.08.2007

Citation: M. L. Blank, S. A. Pirogov, “On Quasi-successful Couplings of Markov Processes”, Probl. Peredachi Inf., 43:4 (2007), 51–67; Problems Inform. Transmission, 43:4 (2007), 316–330

Citation in format AMSBIB
\Bibitem{BlaPir07}
\by M.~L.~Blank, S.~A.~Pirogov
\paper On Quasi-successful Couplings of Markov Processes
\jour Probl. Peredachi Inf.
\yr 2007
\vol 43
\issue 4
\pages 51--67
\mathnet{http://mi.mathnet.ru/ppi27}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2406144}
\zmath{https://zbmath.org/?q=an:1156.60055}
\transl
\jour Problems Inform. Transmission
\yr 2007
\vol 43
\issue 4
\pages 316--330
\crossref{https://doi.org/10.1134/S0032946007040059}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000255782900005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-45349102526}


Linking options:
  • http://mi.mathnet.ru/eng/ppi27
  • http://mi.mathnet.ru/eng/ppi/v43/i4/p51

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Blank M., “Metric properties of discrete time exclusion type processes in continuum”, J. Stat. Phys., 140:1 (2010), 170–197  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Blank M.L., “Unique Ergodicity of a Collective Random Walk”, Dokl. Math., 87:1 (2013), 91–94  crossref  mathscinet  zmath  isi  elib
    3. M. L. Blank, “Interlacing and smoothing: combinatorial aspects”, Problems Inform. Transmission, 50:4 (2014), 350–363  mathnet  crossref  isi
    4. Blank M., “Ergodicity of a Collective Random Walk on a Circle”, Nonlinearity, 27:5 (2014), 953–971  crossref  mathscinet  zmath  isi  elib
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:288
    Full text:56
    References:26
    First page:13

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017