RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2003, Volume 39, Issue 3, Pages 28–39 (Mi ppi306)  

This article is cited in 4 scientific papers (total in 4 papers)

Information Theory and Coding Theory

The Extended Binomial Moments of a Linear Code and the Undetected Error Probability

R. D. Dodunekova

Department of Mathematical Sciences, Chalmers University of Technology and the University of Göteborg

Abstract: Extended binomial moments of a linear code, introduced in this paper, are synonymously related to the code weight distribution and linearly to its binomial moments. In contrast to the latter, the extended binomial moments are monotone, which makes them appropriate for studying the undetected error probability. We establish some properties of the extended binomial moments and, based on this, derive new lower and upper bounds on the probability of undetected error. Also, we give a simplification of some previously obtained sufficient conditions for proper and good codes, stated in terms of the extended binomial moments.

Full text: PDF file (1189 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2003, 39:3, 255–265

Bibliographic databases:

UDC: 621.391.15
Received: 03.06.2002
Revised: 28.01.2003

Citation: R. D. Dodunekova, “The Extended Binomial Moments of a Linear Code and the Undetected Error Probability”, Probl. Peredachi Inf., 39:3 (2003), 28–39; Problems Inform. Transmission, 39:3 (2003), 255–265

Citation in format AMSBIB
\Bibitem{Dod03}
\by R.~D.~Dodunekova
\paper The Extended Binomial Moments of a Linear Code and the Undetected Error Probability
\jour Probl. Peredachi Inf.
\yr 2003
\vol 39
\issue 3
\pages 28--39
\mathnet{http://mi.mathnet.ru/ppi306}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2099860}
\zmath{https://zbmath.org/?q=an:1072.94015}
\transl
\jour Problems Inform. Transmission
\yr 2003
\vol 39
\issue 3
\pages 255--265
\crossref{https://doi.org/10.1023/A:1026162531539}


Linking options:
  • http://mi.mathnet.ru/eng/ppi306
  • http://mi.mathnet.ru/eng/ppi/v39/i3/p28

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. D. Dodunekova, E. Nikolova, “Sufficient Conditions for Monotonicity of the Undetected Error Probability for Large Channel Error Probabilities”, Problems Inform. Transmission, 41:3 (2005), 187–198  mathnet  crossref  mathscinet  zmath
    2. Dodunekova R., Dodunekov S.M., “Error detection with a class of q-ary two-weight codes”, 2005 IEEE International Symposium on Information Theory (ISIT), 2005, 2232–2235  crossref  isi
    3. Dodunekova R., Dodunekov S.M., Nikolova E., “A survey on proper codes”, Discrete Appl. Math., 156:9 (2008), 1499–1509  crossref  mathscinet  zmath  isi
    4. Davydov A.A. Marcugini S. Pambianco F., “New Results on Binary Codes Obtained By Doubling Construction”, Cybern. Inf. Technol., 18:5, SI (2018), 63–76  crossref  mathscinet  isi  scopus
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:281
    Full text:101
    References:30

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020