RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2006, Volume 42, Issue 2, Pages 3–11 (Mi ppi39)  

This article is cited in 9 scientific papers (total in 9 papers)

Information Theory

Remark on the Additivity Conjecture for a Quantum Depolarizing Channel

G. G. Amosov

Moscow Institute of Physics and Technology

Abstract: We consider bistochastic quantum channels generated by unitary representations of a discrete group. We give a proof of the additivity conjecture for a quantum depolarizing channel $\Phi$ based on the decreasing property of the relative entropy. We show that the additivity conjecture holds for a channel $\Xi=\Psi\circ\Phi$, where $\Psi$ is a phase damping channel.

Full text: PDF file (813 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2006, 42:2, 69–76

Bibliographic databases:

UDC: 621.391.1:519.2
Received: 11.02.2005
Revised: 28.12.2005

Citation: G. G. Amosov, “Remark on the Additivity Conjecture for a Quantum Depolarizing Channel”, Probl. Peredachi Inf., 42:2 (2006), 3–11; Problems Inform. Transmission, 42:2 (2006), 69–76

Citation in format AMSBIB
\Bibitem{Amo06}
\by G.~G.~Amosov
\paper Remark on the Additivity Conjecture for a Quantum Depolarizing
Channel
\jour Probl. Peredachi Inf.
\yr 2006
\vol 42
\issue 2
\pages 3--11
\mathnet{http://mi.mathnet.ru/ppi39}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2232885}
\elib{http://elibrary.ru/item.asp?id=9245561}
\transl
\jour Problems Inform. Transmission
\yr 2006
\vol 42
\issue 2
\pages 69--76
\crossref{https://doi.org/10.1134/S0032946006020013}
\elib{http://elibrary.ru/item.asp?id=13519144}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33745821222}


Linking options:
  • http://mi.mathnet.ru/eng/ppi39
  • http://mi.mathnet.ru/eng/ppi/v42/i2/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Karpov E., Daems D., Cerf N.J., “Entanglement-enhanced classical capacity of quantum communication channels with memory in arbitrary dimensions”, Phys. Rev. A, 74:3 (2006), 032320, 9 pp.  crossref  adsnasa  isi  elib
    2. Daems D., “Entanglement-enhanced transmission of classical information in Pauli channels with memory: Exact solution”, Phys. Rev. A, 76:1 (2007), 012310, 4 pp.  crossref  adsnasa  isi  elib
    3. Amosov G.G., “Strong superadditivity conjecture holds for the quantum depolarizing channel in any dimension”, Phys. Rev. A, 75:6 (2007), 060304, 2 pp.  crossref  adsnasa  isi  elib
    4. Fahmi A., Golshani M., “Transition of $d$-level quantum systems through quantum channels with correlated noise”, Phys. Rev. A, 75:4 (2007), 042301, 13 pp.  crossref  adsnasa  isi  elib
    5. Amosov G.G., “On Weyl channels being covariant with respect to the maximum commutative group of unitaries”, J. Math. Phys., 48:1 (2007), 012104, 14 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Amosov G.G., Mancini S., “The decreasing property of relative entropy and the strong superadditivity of quantum channels”, Quantum Inf. Comput., 9:7-8 (2009), 594–609  mathscinet  zmath  isi
    7. Fukuda M., King Ch., Moser D.K., “Comments on Hastings' additivity counterexamples”, Comm. Math. Phys., 296:1 (2010), 111–143  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. G. G. Amosov, “On estimating the output entropy of the tensor product of a phase-damping channel and an arbitrary channel”, Problems Inform. Transmission, 49:3 (2013), 224–231  mathnet  crossref  isi  elib
    9. Junge M., Palazuelos C., Parcet J., Perrin M., “Hypercontractivity in Finite-Dimensional Matrix Algebras”, J. Math. Phys., 56:2 (2015), 023505  crossref  mathscinet  zmath  isi  elib
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:268
    Full text:61
    References:21
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019