RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2000, Volume 36, Issue 4, Pages 3–24 (Mi ppi490)  

This article is cited in 11 scientific papers (total in 11 papers)

Information Theory

On the Relation between the Code Spectrum and the Decoding Error Probability

M. V. Burnashev


Abstract: We show how to lower bound the best decoding error probability (or upper bound the reliability function) given some estimates for the code spectrum. Bounds thus obtained are better than previously known ones.

Full text: PDF file (1888 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2000, 36:4, 285–304

Bibliographic databases:

UDC: 621.391.15
Received: 11.11.1999

Citation: M. V. Burnashev, “On the Relation between the Code Spectrum and the Decoding Error Probability”, Probl. Peredachi Inf., 36:4 (2000), 3–24; Problems Inform. Transmission, 36:4 (2000), 285–304

Citation in format AMSBIB
\Bibitem{Bur00}
\by M.~V.~Burnashev
\paper On the Relation between the Code Spectrum and the Decoding Error Probability
\jour Probl. Peredachi Inf.
\yr 2000
\vol 36
\issue 4
\pages 3--24
\mathnet{http://mi.mathnet.ru/ppi490}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1813648}
\zmath{https://zbmath.org/?q=an:0986.94050}
\transl
\jour Problems Inform. Transmission
\yr 2000
\vol 36
\issue 4
\pages 285--304


Linking options:
  • http://mi.mathnet.ru/eng/ppi490
  • http://mi.mathnet.ru/eng/ppi/v36/i4/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Barg A., McGregor A., “More on the reliability function of the BSC”, 2003 IEEE International Symposium on Information Theory - Proceedings, 2003, 115–115  crossref  isi
    2. Cohen, A, “Lower bounds on the error probability of block codes based on improvements on de Caen's inequality”, IEEE Transactions on Information Theory, 50:2 (2004), 290  crossref  mathscinet  zmath  isi
    3. Tillich, JP, “The Gaussian isoperimetric inequality and decoding error probabilities for the Gaussian channel”, IEEE Transactions on Information Theory, 50:2 (2004), 328  crossref  mathscinet  zmath  isi
    4. M. V. Burnashev, “Sharpening of the Upper Bound for the Reliability Function of a Binary Symmetric Channel”, Problems Inform. Transmission, 41:4 (2005), 301–318  mathnet  crossref  mathscinet  zmath
    5. Barg, A, “Distance distribution of binary codes and the error probability of decoding”, IEEE Transactions on Information Theory, 51:12 (2005), 4237  crossref  mathscinet  zmath  isi
    6. M. V. Burnashev, “Code Spectrum and the Reliability Function: Binary Symmetric Channel”, Problems Inform. Transmission, 42:4 (2006), 263–281  mathnet  crossref  mathscinet
    7. Ben-Haim Ya., Litsyn S., “Improved upper bounds on the reliability function of the Gaussian channel”, 2006 IEEE International Symposium on Information Theory, 2006, 709–713  crossref  isi
    8. M. V. Burnashev, “Code Spectrum and the Reliability Function: Gaussian Channel”, Problems Inform. Transmission, 43:2 (2007), 69–88  mathnet  crossref  mathscinet  zmath  isi
    9. Burnashev M.V., “New results on the reliability function of the Gaussian channel”, 2007 IEEE International Symposium on Information Theory Proceedings, 2007, 471–474  crossref  mathscinet  isi
    10. Ben-Haim, Y, “Improved upper bounds on the reliability function of the Gaussian channel”, IEEE Transactions on Information Theory, 54:1 (2008), 5  crossref  mathscinet  zmath  isi
    11. M. V. Burnashev, “On the BSC reliability function: expanding the region where it is known exactly”, Problems Inform. Transmission, 51:4 (2015), 307–325  mathnet  crossref  isi  elib
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:239
    Full text:97
    References:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019