General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Probl. Peredachi Inf.:

Personal entry:
Save password
Forgotten password?

Probl. Peredachi Inf., 2000, Volume 36, Issue 4, Pages 25–34 (Mi ppi491)  

This article is cited in 94 scientific papers (total in 94 papers)

Information Theory

On the Additivity Conjecture in Quantum Information Theory

G. G. Amosov, A. S. Holevo, R. F. Werner

Abstract: A class of problems in quantum information theory, which have elementary formulations but still resist solutions, concerns the additivity properties (with respect to tensor products of channels) of various quantities characterizing quantum channels such as the “classical capacity” or “maximal output purity.” All known results, including extensive numerical work, are consistent with this conjecture. A proof of this conjecture would have important consequences in quantum information theory. In particular, according to this conjecture, the classical capacity or the maximal purity of outputs cannot be increased by using entangled inputs of the channel. In this paper, we state some additivity/multiplicativity problems, give relations between them, and prove some new partial results, which also support the conjecture.

Full text: PDF file (923 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2000, 36:4, 305–313

Bibliographic databases:
UDC: 621.391.1
Received: 23.05.2000

Citation: G. G. Amosov, A. S. Holevo, R. F. Werner, “On the Additivity Conjecture in Quantum Information Theory”, Probl. Peredachi Inf., 36:4 (2000), 25–34; Problems Inform. Transmission, 36:4 (2000), 305–313

Citation in format AMSBIB
\by G.~G.~Amosov, A.~S.~Holevo, R.~F.~Werner
\paper On the Additivity Conjecture in Quantum Information Theory
\jour Probl. Peredachi Inf.
\yr 2000
\vol 36
\issue 4
\pages 25--34
\jour Problems Inform. Transmission
\yr 2000
\vol 36
\issue 4
\pages 305--313

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Osawa, S, “Numerical experiments on the capacity of quantum channel with entangled input states”, Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences, E84A:10 (2001), 2583  isi
    2. Amosov, GG, “On the multiplicativity hypothesis for quantum communication channels”, Theory of Probability and Its Applications, 47:1 (2002), 123  crossref  mathscinet  zmath  isi
    3. King, C, “Additivity for unital qubit channels”, Journal of Mathematical Physics, 43:10 (2002), 4641  crossref  mathscinet  zmath  adsnasa  isi
    4. Shor, PW, “Additivity of the classical capacity of entanglement-breaking quantum channels”, Journal of Mathematical Physics, 43:9 (2002), 4334  crossref  mathscinet  zmath  adsnasa  isi
    5. Winter, A, “Scalable programmable quantum gates and a new aspect of the additivity problem for the classical capacity of quantum channels”, Journal of Mathematical Physics, 43:9 (2002), 4341  crossref  mathscinet  zmath  adsnasa  isi
    6. Werner, RF, “Counterexample to an additivity conjecture for output purity of quantum channels”, Journal of Mathematical Physics, 43:9 (2002), 4353  crossref  mathscinet  zmath  adsnasa  isi
    7. Ruskai, MB, “Inequalities for quantum entropy: A review with conditions for equality”, Journal of Mathematical Physics, 43:9 (2002), 4358  crossref  mathscinet  zmath  adsnasa  isi
    8. Fujiwara, A, “Additivity of the capacity of depolarizing channels”, Physics Letters A, 299:5–6 (2002), 469  crossref  mathscinet  zmath  adsnasa  isi
    9. Raginsky, M, “Strictly contractive quantum channels and physically realizable quantum computers”, Physical Review A, 65:3 (2002), 032306  crossref  mathscinet  adsnasa  isi
    10. King, C, “Maximization of capacity and l(p) norms for some product channels”, Journal of Mathematical Physics, 43:3 (2002), 1247  crossref  mathscinet  zmath  adsnasa  isi
    11. King, C, “Inequalities for trace norms of 2 x 2 block matrices”, Communications in Mathematical Physics, 242:3 (2003), 531  crossref  mathscinet  zmath  adsnasa  isi
    12. Pomeransky, AA, “Strong superadditivity of the entanglement of formation follows from its additivity”, Physical Review A, 68:3 (2003), 032317  crossref  mathscinet  adsnasa  isi
    13. Kribs, DW, “Quantum channels, wavelets, dilations and representations of O-n”, Proceedings of the Edinburgh Mathematical Society, 46 (2003), 421  crossref  mathscinet  zmath  isi
    14. Shor, PW, “Capacities of quantum channels and how to find them”, Mathematical Programming, 97:1–2 (2003), 311  crossref  mathscinet  zmath  isi
    15. Peres, A, “Relativistic Doppler effect in quantum communication”, Journal of Modern Optics, 50:6–7 (2003), 1165  crossref  mathscinet  zmath  adsnasa  isi
    16. King, C, “Maximal p-norms of entanglement breaking channels”, Quantum Information & Computation, 3:2 (2003), 186  mathscinet  zmath  isi
    17. King, C, “The capacity of the quantum depolarizing channel”, IEEE Transactions on Information Theory, 49:1 (2003), 221  crossref  mathscinet  zmath  isi
    18. A. S. Holevo, M. E. Shirokov, “The additivity problem for constrained quantum channels”, Russian Math. Surveys, 59:2 (2004), 385–387  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. King, C, “Comments on multiplicativity of maximal p-norms when p=2”, Quantum Information & Computation, 4:6–7 (2004), 500  mathscinet  zmath  isi
    20. Shor, PW, “The classical capacity achievable by a quantum channel assisted by a limited entanglement”, Quantum Information & Computation, 4:6–7 (2004), 537  mathscinet  zmath  isi
    21. Eisert, J, “Complete hierarchies of efficient approximations to problems in entanglement theory”, Physical Review A, 70:6 (2004), 062317  crossref  mathscinet  adsnasa  isi
    22. Giovannetti V., Guha S., Lloyd S., Maccone L., Shapiro J. H., “Minimum output entropy of bosonic channels: A conjecture”, Phys. Rev. A (3), 70:3 (2004), 032315, 14 pp.  crossref  adsnasa  isi
    23. Giovannetti V., Lloyd S., Maccone L., Shapiro J. H., Yen B. J., “Minimum Rényi and Wehrl entropies at the output of bosonic channels”, Phys. Rev. A (3), 70:2 (2004), 022328, 8 pp.  crossref  mathscinet  zmath  adsnasa  isi
    24. Amosov, GG, “Quantum probability measures and tomographic probability densities”, Journal of Russian Laser Research, 25:3 (2004), 253  crossref  isi
    25. Giovannetti, V, “Additivity properties of a Gaussian channel”, Physical Review A, 69:6 (2004), 062307  crossref  mathscinet  zmath  adsnasa  isi
    26. Matsumoto, K, “Remarks on additivity of the Holevo channel capacity and of the entanglement of formation”, Communications in Mathematical Physics, 246:3 (2004), 427  crossref  mathscinet  zmath  adsnasa  isi
    27. Audenaert, KMR, “On strong superadditivity of the entanglement of formation”, Communications in Mathematical Physics, 246:3 (2004), 443  crossref  mathscinet  zmath  adsnasa  isi
    28. Audenaert, KMR, “Multiplicativity of accessible fidelity and quantumness for sets of quantum states”, Quantum Information & Computation, 4:1 (2004), 1  mathscinet  zmath  isi
    29. Peres, A, “Quantum information and relativity theory”, Reviews of Modern Physics, 76:1 (2004), 93  crossref  mathscinet  zmath  adsnasa  isi
    30. Holevo A.S., “The additivity problem and constrained quantum channels”, Quantum Informatics 2004, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 5833, 2004, 196–201  isi
    31. Fukuda M., “Extending additivity from symmetric to asymmetric channels”, J. Phys. A, 38:45 (2005), L753–L758  crossref  mathscinet  zmath  adsnasa  isi
    32. Datta N., Ruskai M.B., “Maximal output purity and capacity for asymmetric unital qudit channels”, J. Phys. A, 38:45 (2005), 9785–9802  crossref  mathscinet  zmath  adsnasa  isi  elib
    33. P. Zoller, Th. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, A. Zeilinger, “Quantum information processing and communication - Strategic report on current status, visions and goals for research in Europe”, European Physical Journal D, 36:2 (2005), 203–228  crossref  adsnasa  isi
    34. Ritter W.G., “Quantum channels and representation theory”, J. Math. Phys., 46:8 (2005), 082103, 22 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib
    35. King Ch., Nathanson M., Ruskai M.B., “Multiplicativity properties of entrywise positive maps”, Linear Algebra Appl., 404 (2005), 367–379  crossref  mathscinet  zmath  isi  elib
    36. Wolf, MM, “Classical information capacity of a class of quantum channels”, New Journal of Physics, 7 (2005), 93  crossref  adsnasa  isi
    37. Giovannetti, V, “Conditions for multiplicativity of maximal l(p)-norms of channels for fixed integer p”, Journal of Mathematical Physics, 46:4 (2005), 042105  crossref  mathscinet  zmath  adsnasa  isi
    38. Watrous, J, “Notes on super-operator norms induced by Schatten norms”, Quantum Information & Computation, 5:1 (2005), 58  mathscinet  isi
    39. Holevo, AS, “Additivity conjecture and covariant channels”, International Journal of Quantum Information, 3:1 (2005), 41  crossref  mathscinet  zmath  isi
    40. Giovannetti, V, “Minimum output entropy of a Gaussian Bosonic channel”, International Journal of Quantum Information, 3:1 (2005), 153  crossref  zmath  isi
    41. Serafini, A, “Multiplicativity of maximal output purities of Gaussian channels under Gaussian inputs”, Physical Review A, 71:1 (2005), 012320  crossref  mathscinet  adsnasa  isi
    42. G. G. Amosov, “Remark on the Additivity Conjecture for a Quantum Depolarizing Channel”, Problems Inform. Transmission, 42:2 (2006), 69–76  mathnet  crossref  mathscinet  elib  elib
    43. A. S. Holevo, “Multiplicativity of $p$-norms of completely positive maps and the additivity problem in quantum information theory”, Russian Math. Surveys, 61:2 (2006), 301–339  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    44. A. S. Holevo, “Complementary channels and the additivity problem”, Theory Probab. Appl., 51:1 (2007), 92–100  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    45. Karpov E., Daems D., Cerf N.J., “Entanglement may enhance channel capacity in arbitrary dimensions”, Open Syst. Inf. Dyn., 13:4 (2006), 363–372  crossref  mathscinet  zmath  isi  elib
    46. Karpov E., Daems D., Cerf N.J., “Entanglement-enhanced classical capacity of quantum communication channels with memory in arbitrary dimensions”, Phys. Rev. A, 74:3 (2006), 032320, 9 pp.  crossref  adsnasa  isi  elib
    47. Matsumoto K., “On additivity questions”, Quantum computation and information, Topics Appl. Phys., 102, Springer, Berlin, 2006, 133–164  crossref  mathscinet  zmath  adsnasa  isi  elib
    48. Devetak I., Junge M., King Ch., Ruskai M.B., “Multiplicativity of completely bounded p-norms implies a new additivity result”, Comm. Math. Phys., 266:1 (2006), 37–63  crossref  mathscinet  zmath  adsnasa  isi  elib
    49. King Ch., Koldan N., “New multiplicativity results for qubit maps”, J. Math. Phys., 47:4 (2006), 042106, 9 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib
    50. Hiroshima T., “Additivity and multiplicativity properties of some Gaussian channels for Gaussian inputs”, Phys. Rev. A, 73:1 (2006), 012330, 9 pp.  crossref  adsnasa  isi  elib
    51. Audenaert Koenraad M.R., “A norm compression inequality for block partitioned positive semidefinite matrices”, Linear Algebra Appl., 413:1 (2006), 155–176  crossref  mathscinet  zmath  isi  elib
    52. Wang X.-B., Hiroshima T., Tomita A., Hayashi M., “Quantum information with Gaussian states”, Phys. Rep., 448:1-4 (2007), 1–111  crossref  mathscinet  adsnasa  isi  elib
    53. Amosov G.G., “Strong superadditivity conjecture holds for the quantum depolarizing channel in any dimension”, Phys. Rev. A, 75:6 (2007), 060304, 2 pp.  crossref  adsnasa  isi  elib
    54. Nathanson M., Ruskai M.B., “Pauli diagonal channels constant on axes”, J. Phys. A, 40:28 (2007), 8171–8204  crossref  mathscinet  zmath  adsnasa  isi  elib
    55. Amosov G.G., “On Weyl channels being covariant with respect to the maximum commutative group of unitaries”, J. Math. Phys., 48:1 (2007), 012104, 14 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib
    56. Eisert J., Wolf M.M., “Gaussian quantum channels”, Quantum information with continuous variables of atoms and light, Imp. Coll. Press, London, 2007, 23–42  crossref  mathscinet  zmath  isi
    57. Rosgen B., “Additivity and distinguishability of random unitary channels”, J. Math. Phys., 49:10 (2008), 102107, 16 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib
    58. Hayden P., Winter A., “Counterexamples to the maximal $p$-norm multiplicity conjecture for all $p>1$”, Comm. Math. Phys., 284:1 (2008), 263–280  crossref  mathscinet  zmath  adsnasa  isi  elib
    59. Caruso F., Giovannetti V., Macchiavello Ch., Ruskai M.B., “Qubit channels with small correlations”, Phys. Rev. A, 77:5 (2008), 052323 ťotalpages 11  crossref  adsnasa  isi  elib
    60. Audenaert K.M.R., “Notes on multiplicativity of maximal output purity for completely positive qubit maps - art. no. 012001”, Symmetry and Structural Properties of Condensed Matter, Journal of Physics Conference Series, 104, 2008, 12001–12001  crossref  isi
    61. Müller M., “Convex trace functions on quantum channels and the additivity conjecture”, Phys. Rev. A, 79:5 (2009), 052332  crossref  adsnasa  isi
    62. Daems D., “Transitions in the communication capacity of dissipative qubit channels”, Phys. Rev. Lett., 102:18 (2009), 180503  crossref  adsnasa  isi
    63. Macchiavello, C, “Transition features in quantum communication channels with correlated noise”, Fortschritte der Physik-Progress of Physics, 57:11–12 (2009), 1078  crossref  mathscinet  zmath  isi
    64. Navascues, M, “Power of symmetric extensions for entanglement detection”, Physical Review A, 80:5 (2009), 052306  crossref  adsnasa  isi
    65. Amosov G.G., Stefano M., “The decreasing property of relative entropy and the strong superadditivity of quantum channels”, Quantum Inf. Comput., 9:7-8 (2009), 594–609  mathscinet  zmath  isi
    66. Czekaj L., Horodecki P., “Purely Quantum Superadditivity of Classical Capacities of Quantum Multiple Access Channels”, Phys. Rev. Lett., 102:11 (2009), 110505  crossref  adsnasa  isi  elib
    67. Aubrun, G, “Nonadditivity of Renyi entropy and Dvoretzky's theorem”, Journal of Mathematical Physics, 51:2 (2010), 022102  crossref  mathscinet  zmath  adsnasa  isi
    68. Fukuda, M, “An application of decomposable maps in proving multiplicativity of low dimensional maps”, Journal of Mathematical Physics, 51:2 (2010), 022201  crossref  mathscinet  zmath  adsnasa  isi
    69. Fukuda M., King Ch., Moser D.K., “Comments on Hastings' additivity counterexamples”, Comm. Math. Phys., 296:1 (2010), 111–143  crossref  mathscinet  zmath  adsnasa  isi  elib
    70. Mukhamedov F., Abduganiev A., “On the description of bistochastic Kadison-Schwarz operators on $\mathbb M_2(\mathbb C)$”, Open Syst. Inf. Dyn., 17:3 (2010), 245–253  crossref  mathscinet  zmath  isi
    71. Bradler K., Hayden P., Touchette D., Wilde M.M., “Trade-off capacities of the quantum Hadamard channels”, Phys. Rev. A, 81:6 (2010), 062312  crossref  adsnasa  isi  elib
    72. Brandao Fernando G. S. L., Horodecki M., “On Hastings' Counterexamples to the Minimum Output Entropy Additivity Conjecture”, Open Syst. Inf. Dyn., 17:1 (2010), 31–52  crossref  mathscinet  zmath  isi  elib
    73. Fukuda M., King Ch., “Entanglement of random subspaces via the Hastings bound”, J. Math. Phys., 51:4 (2010), 042201  crossref  mathscinet  zmath  adsnasa  isi  elib
    74. King Ch., “Remarks on the additivity conjectures for quantum channels”, Entropy and the quantum, Contemp. Math., 529, Amer. Math. Soc., Providence, RI, 2010, 177–188  crossref  mathscinet  zmath  isi
    75. Harrow A.W., Montanaro A., “An efficient test for product states, with applications to quantum Merlin-Arthur games”, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, Annual IEEE Symposium on Foundations of Computer Science, 2010, 633–642  crossref  mathscinet  isi
    76. King Ch., Moser D.K., “Average output entropy for quantum channels”, J. Math. Phys., 52:11 (2011), 112202  crossref  mathscinet  zmath  adsnasa  isi
    77. Brandao F. G. S. L., Eisert J., Horodecki M., Yang D., “Entangled Inputs Cannot Make Imperfect Quantum Channels Perfect”, Phys. Rev. Lett., 106:23 (2011), 230502  crossref  adsnasa  isi
    78. Holevo A.S., Giovannetti V., “Quantum channels and their entropic characteristics”, Rep. Prog. Phys., 75:4 (2012), 046001, 30 pp.  crossref  mathscinet  adsnasa  isi  elib
    79. Gour G., Friedland Sh., “The minimum entropy output of a quantum channel is locally additive”, IEEE Trans. Inform. Theory, 59:1 (2013), 603–614  crossref  mathscinet  isi  elib
    80. G. G. Amosov, “On estimating the output entropy of the tensor product of a phase-damping channel and an arbitrary channel”, Problems Inform. Transmission, 49:3 (2013), 224–231  mathnet  crossref  isi  elib
    81. Harrow A.W., Montanaro A., “Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization”, J. ACM, 60:1 (2013), 3  crossref  mathscinet  zmath  isi  elib
    82. Mukhamedov F., Abduganiev A., “On Bistochastic Kadison-Schwarz Operators on M-2(C)”, International Conference on Advancement in Science and Technology 2012 (Icast): Contemporary Mathematics, Mathematical Physics and their Applications, Journal of Physics Conference Series, 435, eds. Ganikhodjaev N., Mukhamedov F., Hee P., IOP Publishing Ltd, 2013  crossref  isi
    83. King Ch., “Multiplicativity of Superoperator Norms For Some Entanglement Breaking Channels”, Quantum Inform. Comput., 14:13-14 (2014), 1203–1212  mathscinet  isi
    84. Wilde M.M., Winter A., Yang D., “Strong Converse For the Classical Capacity of Entanglement-Breaking and Hadamard Channels Via a Sandwiched R,Nyi Relative Entropy”, Commun. Math. Phys., 331:2 (2014), 593–622  crossref  mathscinet  zmath  isi  elib
    85. A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory”, Russian Math. Surveys, 70:2 (2015), 331–367  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    86. Junge M., Palazuelos C., “Channel Capacities Via P-Summing Norms”, Adv. Math., 272 (2015), 350–398  crossref  mathscinet  zmath  isi  elib
    87. Gour G., Kemp T., “The Minimum Renyi Entropy Output of a Quantum Channel Is Locally Additive”, Lett. Math. Phys., 107:6 (2017), 1131–1155  crossref  mathscinet  zmath  isi  scopus
    88. Fukuda M., Gour G., “Additive Bounds of Minimum Output Entropies For Unital Channels and An Exact Qubit Formula”, IEEE Trans. Inf. Theory, 63:3 (2017), 1818–1828  crossref  mathscinet  zmath  isi  scopus
    89. Eltschka Ch., Huber F., Guehne O., Siewert J., “Exponentially Many Entanglement and Correlation Constraints For Multipartite Quantum States”, Phys. Rev. A, 98:5 (2018), 052317  crossref  isi  scopus
    90. Reuvers R., “An Algorithm to Explore Entanglement in Small Systems”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 474:2214 (2018), 20180023  crossref  mathscinet  zmath  isi  scopus
    91. Gessner M., Smerzi A., “Statistical Speed of Quantum States: Generalized Quantum Fisher Information and Schatten Speed”, Phys. Rev. A, 97:2 (2018), 022109  crossref  mathscinet  isi  scopus
    92. Wang X., Fang K., Tomamichel M., “On Finite Blocklength Converse Bounds For Classical Communication Over Quantum Channels”, 2018 IEEE International Symposium on Information Theory (Isit), IEEE International Symposium on Information Theory, IEEE, 2018, 2157–2161  isi
    93. Gyongyosi L., Imre S., Hung Viet Nguyen, “A Survey on Quantum Channel Capacities”, IEEE Commun. Surv. Tutor., 20:2 (2018), 1149–1205  crossref  isi  scopus
    94. Wang X., Xie W., Duan R., “Semidefinite Programming Strong Converse Bounds For Classical Capacity”, IEEE Trans. Inf. Theory, 64:1 (2018), 640–653  crossref  mathscinet  zmath  isi  scopus
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:753
    Full text:181
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020