RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2006, Volume 42, Issue 4, Pages 23–40 (Mi ppi59)  

This article is cited in 2 scientific papers (total in 2 papers)

Information Theory

On the Structure of Optimal Sets for a Quantum Channel

M. E. Shirokov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: Special sets of states, called optimal, which are related to the Holevo capacity and to the minimal output entropy of a quantum channel, are considered. By methods of convex analysis and operator theory, structural properties of optimal sets and conditions of their coincidence are explored for an arbitrary channel. It is shown that strong additivity of the Holevo capacity for two given channels provides projective relations between optimal sets for the tensor product of these channels and optimal sets for the individual channels.

Full text: PDF file (2085 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2006, 42:4, 282–297

Bibliographic databases:

UDC: 621.391.1:519.2
Received: 12.01.2006
Revised: 08.08.2006

Citation: M. E. Shirokov, “On the Structure of Optimal Sets for a Quantum Channel”, Probl. Peredachi Inf., 42:4 (2006), 23–40; Problems Inform. Transmission, 42:4 (2006), 282–297

Citation in format AMSBIB
\Bibitem{Shi06}
\by M.~E.~Shirokov
\paper On~the Structure of Optimal Sets for a Quantum Channel
\jour Probl. Peredachi Inf.
\yr 2006
\vol 42
\issue 4
\pages 23--40
\mathnet{http://mi.mathnet.ru/ppi59}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2278809}
\transl
\jour Problems Inform. Transmission
\yr 2006
\vol 42
\issue 4
\pages 282--297
\crossref{https://doi.org/10.1134/S0032946006040028}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846807660}


Linking options:
  • http://mi.mathnet.ru/eng/ppi59
  • http://mi.mathnet.ru/eng/ppi/v42/i4/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gour G. Friedland Sh., “The Minimum Entropy Output of a Quantum Channel Is Locally Additive”, IEEE Trans. Inf. Theory, 59:1 (2013), 603–614  crossref  mathscinet  isi  elib
    2. Gour G. Kemp T., “The Minimum Renyi Entropy Output of a Quantum Channel Is Locally Additive”, Lett. Math. Phys., 107:6 (2017), 1131–1155  crossref  mathscinet  zmath  isi  scopus
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:294
    Full text:52
    References:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020