RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2007, Volume 43, Issue 1, Pages 56–66 (Mi ppi6)  

Large Systems

Estimation of the Number of Elements in a Covering of an Arbitrary Randomness Test by Frequency Tests

K. Yu. Gorbunov

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: We improve a well-known asymptotic bound on the number of monotonic selection rules for covering of an arbitrary randomness test by frequency tests. More precisely, we prove that, for any set $S$ (arbitrary test) of binary sequences of sufficiently large length $L$, where $|S|\le2^{L(1-\delta)}$, for sufficiently small $\delta$ there exists a polynomial (in $1/\delta$) set of monotonic selection rules (frequency tests) which guarantee that, for each sequence $\boldsymbol t\in S$, a subsequence can be selected such that the product of its length by the squared deviation of the fraction of zeros in it from $1/2$ is of the order of at least $0{,}5\ln2 L[\delta/\ln(1/\delta)](1-2\ln\ln(1/\delta)/\ln(1/\delta))$.

Full text: PDF file (1298 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2007, 43:1, 48–56

Bibliographic databases:

UDC: 621.391.1:519.2
Received: 17.10.2006

Citation: K. Yu. Gorbunov, “Estimation of the Number of Elements in a Covering of an Arbitrary Randomness Test by Frequency Tests”, Probl. Peredachi Inf., 43:1 (2007), 56–66; Problems Inform. Transmission, 43:1 (2007), 48–56

Citation in format AMSBIB
\Bibitem{Gor07}
\by K.~Yu.~Gorbunov
\paper Estimation of the Number of Elements in a Covering of an Arbitrary
Randomness Test by Frequency Tests
\jour Probl. Peredachi Inf.
\yr 2007
\vol 43
\issue 1
\pages 56--66
\mathnet{http://mi.mathnet.ru/ppi6}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2304064}
\elib{http://elibrary.ru/item.asp?id=9469527}
\transl
\jour Problems Inform. Transmission
\yr 2007
\vol 43
\issue 1
\pages 48--56
\crossref{https://doi.org/10.1134/S0032946007010061}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000255299000006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247587197}


Linking options:
  • http://mi.mathnet.ru/eng/ppi6
  • http://mi.mathnet.ru/eng/ppi/v43/i1/p56

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:272
    Full text:44
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018