Kvantovaya Elektronika
General information
Latest issue
Impact factor
Guidelines for authors

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Kvantovaya Elektronika:

Personal entry:
Save password
Forgotten password?

Kvantovaya Elektronika, 2010, Volume 40, Number 9, Pages 830–836 (Mi qe14332)  

This article is cited in 11 scientific papers (total in 11 papers)

Optical fibers, thin-film waveguides

Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation

A. A. Egorova, K. P. Lovetskiib, A. L. Sevastyanovb, L. A. Sevastyanovb

a Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow
b Peoples' Friendship University of Russia, Moscow

Abstract: Propagation of a guided mode (eigenmode) through an integrated optical generalised waveguide Luneburg lens is numerically simulated for the first time in terms of the previously obtained analytical solution of the vector electrodynamic problem in a smoothly irregular four-layer integrated optical 3D waveguide. The dispersion relation for a four-layer continuously irregular integrated optical 3D waveguide is calculated within the approximations of the asymptotic method of comparison waveguides and the method of adiabatic modes, in particular, taking into account the shift of the propagation constants of quasi-TE and quasi-TM modes. A generalised waveguide Luneburg lens with a full aperture is synthesised in the zero-order approximation. The results of numerical simulation demonstrate, on the one hand, a very good coincidence of the solution to the stated problem obtained in the approximation of the method of comparison waveguides with the previous results, and, on the other hand, advantages of our method: more rigorous solution of the problem, more complete consideration of its physical peculiarities, and higher accuracy of calculations. Another undoubted advantage of the analytical method proposed here is that it can be used to analyse similar structures fabricated of dielectrics, magnetics, and metamaterials, including nonlinear materials, in a wide range of electromagnetic wavelengths.

Full text: PDF file (246 kB)
References: PDF file   HTML file

English version:
Quantum Electronics, 2010, 40:9, 830–836

Bibliographic databases:

PACS: 02.30.Mv, 03.50.De, 07.05.Kf, 42.25.Gy, 42.82.Et
Received: 24.03.2010
Revised: 10.07.2010

Citation: A. A. Egorov, K. P. Lovetskii, A. L. Sevastyanov, L. A. Sevastyanov, “Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation”, Kvantovaya Elektronika, 40:9 (2010), 830–836 [Quantum Electron., 40:9 (2010), 830–836]

Linking options:
  • http://mi.mathnet.ru/eng/qe14332
  • http://mi.mathnet.ru/eng/qe/v40/i9/p830

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Sevastianov L.A. Egorov A.A. Sevastyanov A.L., Phys. Atom. Nuclei, 76:2 (2013), 224–239  crossref  adsnasa  isi  elib  scopus
    2. Quantum Electron., 44:2 (2014), 167–173  mathnet  crossref  isi  elib
    3. A. A. Egorov, A. L. Sevastyanov, E. A. Airyan, L. A. Sevastyanov, Matem. modelirovanie, 26:11 (2014), 37–44  mathnet  mathscinet  elib
    4. Sevastyanov L.A. Sevastyanov A.L. Tyutyunnik A.A., Computer Algebra in Scientific Computing, Casc 2014, Lecture Notes in Computer Science, 8660, ed. Gerdt V. Koepf W. Seiler W. Vorozhtsov E., Springer-Verlag Berlin, 2014, 419–431  crossref  zmath  isi  scopus
    5. A. L. Sevastyanov, L. A. Sevastyanov, A. A. Tyutyunnik, Matem. modelirovanie, 27:7 (2015), 103–110  mathnet  mathscinet  elib
    6. Ayrjan E., Gevorkyan M., Kulyabov D., Lovetskiy K., Nikolaev N., Sevastianov A., Sevastianov L., Laneev E., Distributed Computer and Communication Networks, Dccn 2016, Communications in Computer and Information Science, 678, eds. Vishnevskiy V., Samouylov K., Kozyrev D., Springer International Publishing Ag, 2016, 471–482  crossref  zmath  isi  scopus
    7. Ayryan E. Dashitsyrenov G. Laneev E. Lovetskiy K. Sevastianov L. Sevastianov A., Saratov Fall Meeting 2016 - Laser Physics and Photonics Xvii; and Computational Biophysics and Analysis of Biomedical Data III, Proceedings of Spie, 10337, ed. Derbov V. Postnov D., Spie-Int Soc Optical Engineering, 2017, UNSP 103370I  crossref  isi  scopus
    8. Malykh M.D., Sevastianov L.A., Tiutiunnik A.A., Nikolaev N.E., J. Electromagn. Waves Appl., 32:7 (2018), 886–898  crossref  isi  scopus
    9. Malykh M. Sevastianov L. Tyutyunnik A. Nikolaev N., Mathematical Modeling and Computational Physics 2017 (Mmcp 2017), Epj Web of Conferences, 173, ed. Adam G. Busa J. Hnatic M. Podgainy D., E D P Sciences, 2018, UNSP 02014  crossref  isi  scopus
    10. Egorov A.A. Andler G. Sevastianov A.L. Sevastianov L.A., Distributed Computer and Communication Networks (Dccn 2018), Communications in Computer and Information Science, 919, ed. Vishnevskiy V. Kozyrev D., Springer-Verlag Berlin, 2018, 387–398  crossref  isi  scopus
    11. Egorov A.A. Sevastyanov L.A. Shigorin V.D. Ayriyan A.S. Ayriyan E.A., Comput. Opt., 43:6 (2019), 976–982  crossref  isi  scopus
  • Квантовая электроника Quantum Electronics
    Number of views:
    This page:180
    Full text:100
    First page:1

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021