Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2012, Volume 42, Number 2, Pages 130–139 (Mi qe14762)  

This article is cited in 21 scientific papers (total in 21 papers)

Interaction of laser radiation with matter

Formation of extended conducting channels in atmosphere

V. V. Apollonov, N. V. Pletnev

Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow

Abstract: Some mechanisms of the formation of an extended (~1 km) conducting channel in atmosphere using the laser engine technology (Impul'sar program) are considered. The electric conductivity of a channel formed by electric explosion of a 90-μm copper wire up to ~1.6 m long (in electric breakdown) at a voltage not higher than 10 kV is studied. The requirements to the products of laser engine exhaust to atmosphere for producing a conducting channel, containing dispersion and condensation aerosols of hot particles of copper oxides (CuO, Cu2O) and copper with an oxidised surface (from 50 nm to 300 μm in diameter), are formulated. Possible mechanisms of electric breakdown at the field strength E ≥ 52 V cm-1 in the discharge gap are discussed. The electric conductivity of the channel formed by the laser plasma upon focusing the solid-state laser radiation on targets made of different materials has also been studied.

Keywords: long laser spark, formation of a conducting channel in atmosphere, explosing wire, electric breakdown, laser plasma, solidstate and gas pulsed lasers, laser engine.

Full text: PDF file (1553 kB)
References: PDF file   HTML file

English version:
Quantum Electronics, 2012, 42:2, 130–139

Bibliographic databases:

PACS: 42.62.-b, 42.55.Lt, 52.50.Jm, 52.80.-s
Received: 02.11.2011
Revised: 21.12.2011

Citation: V. V. Apollonov, N. V. Pletnev, “Formation of extended conducting channels in atmosphere”, Kvantovaya Elektronika, 42:2 (2012), 130–139 [Quantum Electron., 42:2 (2012), 130–139]

Linking options:
  • http://mi.mathnet.ru/eng/qe14762
  • http://mi.mathnet.ru/eng/qe/v42/i2/p130

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Priti Sati, V. K. Tripathi, Phys. Plasmas, 19:12 (2012), 122113  crossref  adsnasa  isi  scopus
    2. Apollonov V.V., Pletnev N.V., J. Mar. Sci. Technol.-Taiwan, 20:6 (2012), 670–674  crossref  isi  elib  scopus
    3. Quantum Electron., 43:4 (2013), 339–346  mathnet  crossref  adsnasa  isi  elib
    4. V. V. Apollonov, N. V. Pletnev, Tech. Phys, 58:12 (2013), 1770  crossref  isi  elib  scopus
    5. Y. E. Geints, A. A. Zemlyanov, J. Opt. Soc. Am. B, 31:4 (2014), 788  crossref  adsnasa  isi  elib  scopus
    6. Quantum Electron., 44:9 (2014), 815–823  mathnet  crossref  isi  elib
    7. N.I. Kosarev, J. Phys. B: At. Mol. Opt. Phys, 47:24 (2014), 245002  crossref  adsnasa  isi  scopus
    8. V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, L. V. Seleznev, D. V. Sinitsyn, Plasma Phys. Rep, 41:2 (2015), 112  crossref  adsnasa  isi  elib  scopus
    9. Lyubimov V.V., Kozyr D.V., Gnidina I.V., Cirpe 2015 - Understanding the Life Cycle Implications of Manufacturing, Procedia Cirp, 37, ed. Erkoyuncu J., Elsevier Science BV, 2015, 112–116  crossref  isi  scopus
    10. Apollonov V.V., Pletnev N.V., Tech. Phys., 61:11 (2016), 1654–1660  crossref  isi  elib  scopus
    11. Y. E. Geints, A. A. Zemlyanov, Appl. Optics, 56:5 (2017), 1397–1404  crossref  isi  scopus
    12. Pletnev N.V., Tech. Phys., 63:8 (2018), 1137–1150  crossref  isi  scopus
    13. Donchenko V.A., Balandin S.F., Kemel'bekov B.Zh., Myshkin V.F., Khan V.A., Russ. Phys. J., 61:5 (2018), 918–929  crossref  isi  scopus
    14. Apollonov V.: Apollonov, V, High-Conductivity Channels in Space, Springer Series on Atomic Optical and Plasma Physics, 103, Springer, 2018, 117–127  crossref  isi
    15. Ivashchenko A., Kochuev D., Chkalov R., Mater. Today-Proc., 11:1 (2019), 465–470  crossref  isi  scopus
    16. Ivashchenko V A., Kochuev D.A., Chkalov V R., Khorkov K.S., Prokoshev V.G., Vii International Conference Modern Nanotechnologies and Nanophotonics For Science and Industry, Journal of Physics Conference Series, 1164, IOP Publishing Ltd, 2019  crossref  isi  scopus
    17. Wright E.M., Koch S.W., Kolesik M., Moloney V J., Rep. Prog. Phys., 82:6 (2019), 064401  crossref  isi
    18. Quantum Electron., 49:8 (2019), 735–739  mathnet  crossref  isi  elib
    19. Kochuev D., Chkalov R., Chernikov A., Mater. Today-Proc., 19:5 (2019), 1928–1931  crossref  isi
    20. Kochuev D.A., Khor'kov K.S., Chernikov A.S., Chkalov R.V., Prokoshev V.G., Tech. Phys. Lett., 46:8 (2020), 779–782  crossref  isi  scopus
    21. Pletnev V N., Ponomarev N.B., Motalin G.A., Murashov V.F., Combust. Explos., 56:2 (2020), 181–187  crossref  isi
  • Квантовая электроника Quantum Electronics
    Number of views:
    This page:360
    Full text:237
    References:42
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022