Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2013, Volume 43, Number 3, Pages 190–200 (Mi qe15096)  

This article is cited in 32 scientific papers (total in 32 papers)

Extreme light fields and their applications

Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects

S. V. Alekseeva, A. I. Aristovb, Ya. V. Grudtsynb, N. G. Ivanova, B. M. Koval'chuka, V. F. Losevca, S. B. Mamaevb, G. A. Mesyatsb, L. D. Mikheevb, Yu. N. Panchenkoa, A. V. Polivinb, S. G. Stepanovb, N. A. Ratakhinca, V. I. Yalovoib, A. G. Yastremskiia

a Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences, Tomsk
b P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow
c Tomsk Polytechnic University

Abstract: Results of experimental and theoretical investigations of the hybrid (solid state/gas) visible-range femtosecond systems THL-100 (IHCE SB RAS) and THL-30 (P.N. Lebedev Physics Institute) based on a Ti : sapphire front end and a photochemical XeF(C–A) amplifier are reported. The front end generates 50-fs optical pulses with the second-harmonic (475 nm) energy of up to 5 mJ. The active medium of the amplifier is produced in a mixture XeF2–N2 subjected to VUV radiation of xenon excited by an electron beam. The computer model is developed for calculating parameters of the XeF(C–A) amplifier, which is in a good agreement with experiments. In the THL-100 system with the 25-cm output aperture of the XeF(C–A) amplifier, a record visible-range femtosecond radiation peak power of 14 GW was obtained in a 50-fs pulse with the time contrast of above 108. The measured power of an amplified spontaneous emission of the XeF(C–A) amplifier in the angle of 0.2 mrad was 32 W. The result obtained testifies that the hybrid approach to the development of ultrahigh-power systems provides a high time contrast of radiation (greater than 1012 for the projected peak power of 100 TW). In the THL-30 system, prospects for shortening an amplified femtosecond pulse are studied and it is experimentally shown that by compensating a third-order dispersion in a hybrid system one can obtain pulses with duration of at least 27 fs with a recompression of amplified pulses in bulk glass. Also, a new phenomenon was observed of spectrum broadening and self-compression of negatively chirped femtosecond pulses in the visible range under a nonlinear interaction of wide-aperture beams with fused silica. This result opens prospects for development of the new methods of selfcompression for femtosecond pulses that are lacking physical limitations on pulse energy and realisation of self-compression of amplified pulses in the output window of the XeF(C–A) amplifier.

Keywords: hybrid laser system, XeF(CA) amplifier, visible-range femtosecond radiation, negatively chirped femtosecond pulse, self-compression.

Full text: PDF file (10981 kB)
References: PDF file   HTML file

English version:
Quantum Electronics, 2013, 43:3, 190–200

Bibliographic databases:

PACS: 42.55.Lt, 42.65.Re, 42.65.Jx, 42.65.Ky
Received: 24.01.2013

Citation: S. V. Alekseev, A. I. Aristov, Ya. V. Grudtsyn, N. G. Ivanov, B. M. Koval'chuk, V. F. Losev, S. B. Mamaev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, A. V. Polivin, S. G. Stepanov, N. A. Ratakhin, V. I. Yalovoi, A. G. Yastremskii, “Visible-range hybrid femtosecond systems based on a XeF(C–A) amplifier: state of the art and prospects”, Kvantovaya Elektronika, 43:3 (2013), 190–200 [Quantum Electron., 43:3 (2013), 190–200]

Linking options:
  • http://mi.mathnet.ru/eng/qe15096
  • http://mi.mathnet.ru/eng/qe/v43/i3/p190

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Alekseev S.V., Andreev Yu.M., Losev V.F., Lubenko D.M., Russ. Phys. J.  crossref  isi  scopus
    2. N. G. Ivanov, V. F. Losev, Yu. N. Panchenko, A. G. Jastremskii, Atmos Ocean Opt, 27:4 (2014), 329  crossref  scopus
    3. S. V. Alekseev, N. G. Ivanov, M. V. Ivanov, V. F. Losev, Yu. N. Panchenko, Bull. Russ. Acad. Sci. Phys, 79:2 (2015), 242  crossref  elib  scopus
    4. Yastremskii A.G., Ivanov N.G., Losev V.F., Panchenko Yu.N., Xx International Symposium on High-Power Laser Systems and Applications 2014, Proceedings of Spie, 9255, eds. Tang C., Chen S., Tang X., Spie-Int Soc Optical Engineering, 2015, 925528  crossref  isi  scopus
    5. Alekseev S.V., Ivanov M.V., Ivanov N.G., Losev V.F., Mesyats G.A., Panchenko Yu.N., Ratakhin N.A., Russ. Phys. J., 58:8 (2015), 1087–1092  crossref  isi  scopus
    6. Alekseev S.V., Ivanov N.G., Losev V.F., Mironov S.Yu., International Conference on Atomic and Molecular Pulsed Lasers Xii, Proceedings of Spie, 9810, eds. Tarasenko V., Kabanov A., Spie-Int Soc Optical Engineering, 2015, 98100P  crossref  isi  scopus
    7. Ivanov M.V., Alekseev S.V., Ivanov N.G., Losev V.F., International Conference on Atomic and Molecular Pulsed Lasers Xii, Proceedings of Spie, 9810, eds. Tarasenko V., Kabanov A., Spie-Int Soc Optical Engineering, 2015, 98100J  crossref  isi  scopus
    8. Yastremskii A.G., Ivanov N.G., Losev V.F., Panchenko Yu.N., International Conference on Atomic and Molecular Pulsed Lasers Xii, Proceedings of Spie, 9810, eds. Tarasenko V., Kabanov A., Spie-Int Soc Optical Engineering, 2015, 98100O  crossref  isi  scopus
    9. Quantum Electron., 46:11 (2016), 982–988  mathnet  crossref  isi  elib
    10. Ivanov N.G., Ivanov M.V., Losev V.F., Yastremskii A.G., Russ. Phys. J., 59:7 (2016), 984–993  crossref  isi
    11. Losev V.F., Alekseev S.V., Ivanov N.G., Ivanov M.V., Mesyats G.A., Mikheev L.D., Panchenko Yu.N., Ratakhin N.A., Yastremskii A.G., 2016 International Conference Laser Optics (Lo), IEEE, 2016  isi
    12. Quantum Electron., 47:3 (2017), 184–187  mathnet  crossref  isi  elib
    13. V. F. Losev, S. V. Alekseev, M. V. Ivanov, N. G. Ivanov, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, N. A. Ratakhin, A. G. Yastremsky, XXI International Symposium on High Power Laser Systems and Applications (Gmunden, Austria, Monday 5 September 2016), SPIE Proceedings, 10254, ed. D. Schuocker, R. Majer, J. Brunnbauer, Spie-Int Soc Optical Engineering, 2017, UNSP 1025415  crossref  isi  scopus
    14. V. Losev, XXI International Symposium on High Power Laser Systems and Applications (Gmunden, Austria, Monday 5 September 2016), SPIE Proceedings, 10254, eds. D. Schuocker, R. Majer, J. Brunnbauer, Spie-Int Soc Optical Engineering, 2017, UNSP 1025412  crossref  isi  scopus
    15. S. V. Alekseev, M. V. Ivanov, N. G. Ivanov, V. F. Losev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, N. A. Ratakhin, A. G. Yastremskii, Russ. Phys. J., 60:8 (2017), 1346–1352  crossref  isi  scopus
    16. V. Losev, N. Ivanov, L. Mikheev, Fourth International Symposium on Laser Interaction With Matter, Proceedings of Spie, 10173, eds. Y. Ding, G. Feng, D. Hoffmann, J. Cao, Y. Lu, Spie-Int Soc Optical Engineering, 2017, UNSP 101731D  crossref  isi  scopus
    17. B. Gilicze, R. Dajka, I. B. Foldes, S. Szatmari, Opt. Express, 25:17 (2017), 20791–20797  crossref  isi  scopus
    18. Ya. V. Grudtsyn, A. V. Koribut, V. A. Trofimov, L. D. Mikheev, J. Opt. Soc. Am. B-Opt. Phys., 35:5 (2018), 1054–1058  crossref  isi  scopus
    19. Quantum Electron., 48:3 (2018), 206–211  mathnet  crossref  isi  elib
    20. Quantum Electron., 48:4 (2018), 306–312  mathnet  crossref  isi  elib
    21. M. V. Ivanov, N. G. Ivanov, V. F. Losev, International Conference on Atomic and Molecular Pulsed Lasers XIII, Proceedings of Spie, 10614, ed. V. Tarasenko, A. Kabanov, Spie-Int Soc Optical Engineering, 2018, UNSP 1061428  crossref  isi  scopus
    22. V. F. Losev, S. V. Alekseev, M. V. Ivanov, N. G. Ivanov, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, N. A. Ratakhin, A. G. Yastremsky, XXII International Symposium on High Power Laser Systems and Applications, Proceedings of Spie, 11042, ed. P. DiLazzaro, Spie-Int Soc Optical Engineering, 2018, UNSP 110420P  crossref  isi  scopus
    23. Quantum Electron., 49:3 (2019), 205–209  mathnet  crossref  isi  elib
    24. Quantum Electron., 49:4 (2019), 302–306  mathnet  crossref  isi  elib
    25. Ivanov N.G. Losev V.F., Russ. Phys. J., 61:11 (2019), 2028–2032  crossref  isi  scopus
    26. Gilicze B., Homik Z., Szatmari S., Opt. Express, 27:12 (2019), 17377–17386  crossref  isi
    27. Quantum Electron., 49:10 (2019), 901–904  mathnet  crossref  isi  elib
    28. Yastremskii A.G. Ivanov N.G. Losev V.F., Russ. Phys. J., 62:5 (2019), 915–921  crossref  isi
    29. Ivanov N.G. Losev V.F. Ivanov V M. Alekseev V S., High Energy Density Phys., 33 (2019), UNSP 100701  crossref  isi  scopus
    30. Alekseev V S. Ivanov N.G. Losev V.F. Mesyats G.A. Mikheev L.D. Ratakhin N.A. Panchenko Yu.N., Opt. Commun., 455 (2020), UNSP 124386  crossref  isi  scopus
    31. Alekseev S.V. Ivanov M.V. Ivanov N.G. Losev V.F., Russ. Phys. J., 62:12 (2020), 2324–2329  crossref  isi  scopus
    32. Sergey V. Alekseev, Valery F. Losev, Yakov V. Grudtsyn, Andrey V. Koribut, Vyacheslav A. Trofimov, Zhurn. SFU. Ser. Matem. i fiz., 14:2 (2021), 144–149  mathnet  crossref
  •  Quantum Electronics
    Number of views:
    This page:331
    Full text:109
    References:36
    First page:10

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021