Kvantovaya Elektronika
General information
Latest issue
Impact factor
Guidelines for authors

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Kvantovaya Elektronika:

Personal entry:
Save password
Forgotten password?

Kvantovaya Elektronika, 2013, Volume 43, Number 3, Pages 226–231 (Mi qe15100)  

This article is cited in 7 scientific papers (total in 7 papers)

Extreme light fields and their applications

Generation of quasi-monochromatic beams of accelerated electrons during interaction of weak-contrast intense femtosecond laser radiation with a metal-foil edge

Yu. A. Malkova, A. N. Stepanova, D. A. Yashunina, L. P. Pugachevb, P. R. Levashovb, N. E. Andreevb, A. A. Andreevc

a Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod
b Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow
c Institute of Laser Physics of the S. I. Vavilov State Optical Institute

Abstract: The formation of monoenergetic beams of accelerated electrons by focusing femtosecond laser radiation with an intensity of 2 × 1017 W cm-2 onto an edge of aluminium foil has been experimentally demonstrated. The electrons had energy distributions peaking in the range from 0.2 to 0.8 MeV and an energy spread less than 20 %. The acceleration mechanism related to the generation of a plasma wave as a result of self-modulation instability of the laser pulse in the subcritical plasma formed the prepulse of the laser system (arriving 10 ns before the main pulse) is considered. Onedimensional PIC simulation of the interaction between the laser radiation and plasma with a concentration of 5 × 1019 cm-3 showed that effective excitation of a plasma wave, as well as the trapping and acceleration of the electron beam with an energy on the order of 1 MeV, may occur in the presence of inhomogeneities in the density at the plasma boundary and in the temporal shape of the beam.

Keywords: femtosecond laser radiation, acceleration of electrons, self-modulation instability, plasma wave.

Full text: PDF file (1583 kB)
References: PDF file   HTML file

English version:
Quantum Electronics, 2013, 43:3, 226–231

Bibliographic databases:

PACS: 52.38.Kd, 52.50.Jm, 42.65.Re
Received: 24.12.2012

Citation: Yu. A. Malkov, A. N. Stepanov, D. A. Yashunin, L. P. Pugachev, P. R. Levashov, N. E. Andreev, A. A. Andreev, “Generation of quasi-monochromatic beams of accelerated electrons during interaction of weak-contrast intense femtosecond laser radiation with a metal-foil edge”, Kvantovaya Elektronika, 43:3 (2013), 226–231 [Quantum Electron., 43:3 (2013), 226–231]

Linking options:
  • http://mi.mathnet.ru/eng/qe15100
  • http://mi.mathnet.ru/eng/qe/v43/i3/p226

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. P. Pugachev, N. E. Andreev, P. R. Levashov, Yu. A. Malkov, A. N. Stepanov, Plasma Phys. Rep, 41:7 (2015), 542  crossref  adsnasa  isi  elib  scopus
    2. Pugachev L.P., Levashov P.R., Andreev N.E., Xxx International Conference on Interaction of Intense Energy Fluxes With Matter (Elbrus 2015), Journal of Physics Conference Series, 653, IOP Publishing Ltd, 2015, 012005  crossref  isi  scopus
    3. Pugachev L.P. Popov V.S. Andreev N.E., Xxxi International Conference on Equations of State For Matter (Elbrus 2016), Journal of Physics Conference Series, 774, IOP Publishing Ltd, 2016, UNSP 012106  crossref  isi  scopus
    4. Quantum Electron., 49:4 (2019), 307–313  mathnet  crossref  isi  elib
    5. Popov V.S., Pugachev L.P., Andreev N.E., XXXIII International Conference on Equations of State For Matter, Journal of Physics Conference Series, 1147, IOP Publishing Ltd, 2019  crossref  isi
    6. Assmann R.W., Weikum M.K., Akhter T., Alesini D., Alexandrova A.S., Anania M.P., Andreev N.E., Andriyash I., Artioli M., Aschikhin A., Audet T., Bacci A., Barna I.F., Bartocci S., Bayramian A., Beaton A., Beck A., Bellaveglia M., Beluze A., Bernhard A., Biagioni A., Bielawski S., Bisesto F.G., Bonatto A., Boulton L., Brandi F., Brinkmann R., Briquez F., Brottier F., Bruendermann E., Buescher M., Buonomo B., Bussmann M.H., Bussolino G., Campana P., Cantarella S., Cassou K., Chance A., Chen M., Chiadroni E., Cianchi A., Cioeta F., Clarke J.A., Cole J.M., Costa G., Couprie M.-E., Cowley J., Croia M., Cros B., Crump P.A., D'Arcy R., Dattoli G., Del Dotto A., Delerue N., Del Franco M., Delinikolas P., De Nicola S., Dias J.M., Di Giovenale D., Diomede M., Di Pasquale E., Di Pirro G., Di Raddo G., Dorda U., Erlandson A.C., Ertel K., Esposito A., Falcoz F., Falone A., Fedele R., Pousa A.F., Ferrario M., Filippi F., Fils J., Fiore G., Fiorito R., Fonseca R.A., Franzini G., Galimberti M., Gallo , Eur. Phys. J.-Spec. Top., 229:24 (2020), 3675–4284  crossref  isi  scopus
    7. Quantum Electron., 51:9 (2021), 768–794  mathnet  crossref  isi  elib
  • Квантовая электроника Quantum Electronics
    Number of views:
    This page:252
    Full text:96
    First page:18

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021