RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2016, Volume 46, Number 10, Pages 891–894 (Mi qe16486)  

This article is cited in 1 scientific paper (total in 1 paper)

Nonlinear optical phenomena

Concentration nonlinearity of a suspension of transparent microspheres under the action of a gradient force in a periodically modulated laser field

A. A. Afanas'eva, L. S. Gaidab, Yu. A. Kurochkina, D. V. Novitskya, A. Ch. Svistunb

a B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk
b Yanka Kupala State University of Grodno

Abstract: Based on a one-dimensional Smoluchowski equation we have developed the theory of concentration nonlinearity of a suspension of transparent microspheres under the action of a gradient force in an interference laser field. The numerical solution of a system of recurrence equations resulting from the Smoluchowski equation after expansion of the microsphere concentration $N(z,t)$ in the harmonic series has allowed us to determine the dependence of the concentration nonlinearity settling time on the intensity of the incident radiation. In the diffusion limit, we have derived the expression for the optical Kerr coefficient, which is found to be $8.5\times10^{-10}$ cm$^2$ W$^{-1}$ for an aqueous suspension of latex microspheres with a radius of $1.17\mu$m and a concentration of $6.5\times10^{10}$ cm$^{-3}$. Diffraction of a probe wave on a light-induced concentration grating is considered as a method for studying a nonlinear concentration response of an artificial highly efficient nonlinear medium for laser radiation of long pulse duration.

Keywords: Smoluchowski equation, transparent microspheres, concentration nonlinearity, diffusion limit, optical Kerr coefficient, diffraction.
Author to whom correspondence should be addressed

Full text: PDF file (552 kB)
References: PDF file   HTML file

English version:
Quantum Electronics, 2016, 46:10, 891–894

Bibliographic databases:

Received: 10.08.2016
Revised: 17.09.2016

Citation: A. A. Afanas'ev, L. S. Gaida, Yu. A. Kurochkin, D. V. Novitsky, A. Ch. Svistun, “Concentration nonlinearity of a suspension of transparent microspheres under the action of a gradient force in a periodically modulated laser field”, Kvantovaya Elektronika, 46:10 (2016), 891–894 [Quantum Electron., 46:10 (2016), 891–894]

Citation in format AMSBIB
\Bibitem{AfaGaiKur16}
\by A.~A.~Afanas'ev, L.~S.~Gaida, Yu.~A.~Kurochkin, D.~V.~Novitsky, A.~Ch.~Svistun
\paper Concentration nonlinearity of a suspension of transparent microspheres under the action
of a gradient force in a periodically modulated laser field
\jour Kvantovaya Elektronika
\yr 2016
\vol 46
\issue 10
\pages 891--894
\mathnet{http://mi.mathnet.ru/qe16486}
\elib{http://elibrary.ru/item.asp?id=27484962}
\transl
\jour Quantum Electron.
\yr 2016
\vol 46
\issue 10
\pages 891--894
\crossref{https://doi.org/10.1070/QEL16196}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000389148300007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994130006}


Linking options:
  • http://mi.mathnet.ru/eng/qe16486
  • http://mi.mathnet.ru/eng/qe/v46/i10/p891

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Afanasev, L. S. Gaida, E. V. Matuk, A. Ch. Svistun, PFMT, 2016, no. 4(29), 7–12  mathnet
  • Квантовая электроника Quantum Electronics
    Number of views:
    This page:97
    Full text:16
    References:24
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020