Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2017, Volume 47, Number 4, Pages 385–392 (Mi qe16593)  

This article is cited in 14 scientific papers (total in 14 papers)

Optical elements

Laboratory reflectometer for the investigation of optical elements in a wavelength range of 5 – 50 nm: description and testing results

S. A. Garakhin, I. G. Zabrodin, S. Yu. Zuev, I. A. Kas'kov, A. Ya. Lopatin, A. N. Nechai, V. N. Polkovnikov, N. N. Salashchenko, N. N. Tsybin, N. I. Chkhalo, M. V. Svechnikov

Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhnii Novgorod

Abstract: We describe a laboratory reflectometer developed at the IPM RAS for precision measurements of spectral and angular dependences of the reflection and transmission coefficients of optical elements in a wavelength range of 5 – 50 nm. The radiation is monochromatised using a high-resolution Czerny–Turner spectrometer with a plane diffraction grating and two spherical collimating mirrors. A toroidal mirror focuses the probe monochromatic beam on a sample. The X-ray source is a highly ionised plasma produced in the interaction of a high-power laser beam with a solid target at an intensity of 1011 – 1012 W cm-2. To stabilise the emission characteristics, the target executes translatory and rotary motions in such a way that every pulse irradiates a new spot. The short-focus lens is protected from contamination by erosion products with the use of a specially designed electromagnetic system. The samples under study are mounted on a goniometer is accommodated in a dedicated chamber, which provides five degrees of freedom for samples up to 500 mm in diameter and two degrees of freedom for a detector. The sample mass may range up to 10 kg. The X-ray radiation is recorded with a detector composed of a CsI photocathode and two microchannel plates. A similar detector monitors the probe beam intensity. The spectral reflectometer resolution is equal to 0.030 nm with the use of ruled gratings with a density of 900 lines mm-1 (spectral range: 5 – 20 nm) and to 0.067 nm for holographic gratings with a density of 400 lines mm-1 (spectral range: 10 – 50 nm). We analyse the contribution of higher diffraction orders to the probe signal intensity and the ways of taking it into account in the measurements. Examples are given which serve to illustrate the reflectometer application to the study of multilayer mirrors and filters.

Keywords: reflectometer, goniometer, soft X-ray radiation, extreme ultraviolet radiation, laser-produced plasma, multilayer mirror.

Funding Agency Grant Number
Russian Academy of Sciences - Federal Agency for Scientific Organizations
Russian Science Foundation 16-42-01034


Full text: PDF file (1101 kB)
References: PDF file   HTML file

English version:
Quantum Electronics, 2017, 47:4, 385–392

Bibliographic databases:

Received: 06.02.2017
Revised: 09.03.2017

Citation: S. A. Garakhin, I. G. Zabrodin, S. Yu. Zuev, I. A. Kas'kov, A. Ya. Lopatin, A. N. Nechai, V. N. Polkovnikov, N. N. Salashchenko, N. N. Tsybin, N. I. Chkhalo, M. V. Svechnikov, “Laboratory reflectometer for the investigation of optical elements in a wavelength range of 5 – 50 nm: description and testing results”, Kvantovaya Elektronika, 47:4 (2017), 385–392 [Quantum Electron., 47:4 (2017), 385–392]

Linking options:
  • http://mi.mathnet.ru/eng/qe16593
  • http://mi.mathnet.ru/eng/qe/v47/i4/p385

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. I. Chkhalo, S. A. Garakhin, S. V. Golubev, A. Ya. Lopatin, A. N. Nechay, A. E. Pestov, N. N. Salashchenko, M. N. Toropov, N. N. Tsybin, A. V. Vodopyanov, S. Yulin, Appl. Phys. Lett., 112:22 (2018), 221101  crossref  isi
    2. N. I. Chkhalo, S. A. Garakhin, A. Ya. Lopatin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, N. N. Tsybin, S. Yu. Zuev, AIP Adv., 8:10 (2018), 105003  crossref  isi  scopus
    3. Quantum Electron., 49:4 (2019), 380–385  mathnet  crossref  isi  elib
    4. D. B. Abramenko, P. S. Antsiferov, L. A. Dorokhin, V. V. Medvedev, V Yu. Sidelnikov , I N. Chkhalo , V. N. Polkovnikov, Opt. Lett., 44:20 (2019), 4949–4952  crossref  isi
    5. R. M. Smertin, S. A. Garakhin, S. Yu. Zuev, A. N. Nechai, V. N. Polkovnikov, N. N. Salashchenko, V M. Svechnikov , M. G. Sertsu, A. Sokolov, I N. Chkhalo , F. Schaefers, P. A. Yunin, Tech. Phys., 64:11 (2019), 1692–1697  crossref  isi
    6. V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, N. I. Chkhalo, Phys. Usp., 63:1 (2020), 83–95  mathnet  crossref  crossref  isi  elib
    7. Quantum Electron., 50:4 (2020), 408–413  mathnet  crossref  isi  elib
    8. Quantum Electron., 50:10 (2020), 967–975  mathnet  crossref  isi  elib
    9. N. Kumar, A. T. Kozakov, V A. Nezhdanov , R. M. Smertin, V. N. Polkovnikov, I N. Chkhalo , I A. Mashin , A. N. Nikolskii, A. A. Scrjabin, S. Y. Zuev, J. Phys. Chem. C, 124:32 (2020), 17795–17805  crossref  isi
    10. S. A. Garakhin, M. V. Zorina, S. Yu. Zuev, M. S. Mikhailenko, A. E. Pestov, R. S. Pleshkov, V. N. Polkovnikov, N. N. Salashchenko, N. I. Chkhalo, Tech. Phys., 65:11 (2020), 1780–1785  crossref  isi  scopus
    11. R. S. Pleshkov, S. Yu. Zuev, V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, N. I. Chkhalo, P. Jonnard, Tech. Phys., 65:11 (2020), 1786–1791  crossref  isi  scopus
    12. S. A. Garakhin, M. M. Barysheva, E. A. Vishnyakov, S. Yu. Zuev, A. S. Kirichenko, S. V. Kuzin, V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, N. I. Chkhalo, Tech. Phys., 65:11 (2020), 1792–1799  crossref  isi  scopus
    13. S. A. Garakhin, N. I. Chkhalo, I. A. Kas'kov, A. Ya. Lopatin, I. V. Malyshev, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. V. Svechnikov, N. N. Tsybin, I. G. Zabrodin, S. Yu. Zuev, Rev. Sci. Instrum., 91:6 (2020), 063103  crossref  isi  scopus
    14. Kumar N., Kozakov A.T., Smertin R.M., Polkovnikov V.N., Chkhalo N.I., Nikolskii A.V., Scrjabin A.A., Thin Solid Films, 717 (2021), 138449  crossref  isi  scopus
  • Квантовая электроника Quantum Electronics
    Number of views:
    This page:230
    Full text:92
    References:23
    First page:14

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021