RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2017, Volume 47, Number 6, Pages 509–521 (Mi qe16630)  

This article is cited in 7 scientific papers (total in 7 papers)

Interaction of laser radiation with matter. Laser plasma

Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam

S. I. Anisimova, V. V. Zhakhovskiib, N. A. Inogamova, S. A. Murzovcb, V. A. Khokhlova

a L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences
b All-Russian Scientific Research Institute of Automatics, Moscow
c Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region

Abstract: This paper considers the effect of an ultrashort laser pulse on a thin gold film on a glass substrate at a focal spot size near 1 μm. We analyse the motion and thermal history of a film that has peeled off from the substrate in the heating spot as a consequence of melting. The detached zone is shown to form a domeshaped bump whose motion is hindered by surface tension. After the dome stops and turns back, towards the substrate, a jet begins to grow on its top. Concurrently, because of the heat dissipation in the film, melt recrystallisation begins, involving first the dome and then the jet. The liquid part of the jet elongates and breaks up into droplets because of the Plateau–Rayleigh instability development. The formation of a neck and the detachment of the last droplet occur in the solidification zone between the crystalline and liquid parts of the jet. The propagation of the crystallisation zone in the jet leads the necking process, so neck disruption occurs in the solid phase under nonequilibrium crystallisation conditions (the melt temperature is hundreds of kelvins lower than the melting point), at limiting mechanical stress and at high deformation rates. As a result, the jet transforms into a high needle with an extremely small tip radius (a few nanometres).

Keywords: ultrashort laser exposure, ablation of thin films, single nanostructures.

Funding Agency Grant Number
Russian Science Foundation 14-19-01599


Full text: PDF file (3243 kB)
References: PDF file   HTML file

Materials:
pic_10.pdf 688.5 Kb
pic_11.pdf 586.1 Kb
pic_12.pdf 586.1 Kb
pic_13.pdf 586.1 Kb
pic_14.pdf 1.6 Mb
pic_15.pdf 1.6 Mb
pic_16.pdf 1.6 Mb
pic_17.pdf 357.5 Kb
pic_8.pdf 633.7 Kb
pic_9.pdf 688.5 Kb


English version:
Quantum Electronics, 2017, 47:6, 509–521

Bibliographic databases:

Document Type: Article
Received: 24.03.2017

Citation: S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, S. A. Murzov, V. A. Khokhlov, “Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam”, Kvantovaya Elektronika, 47:6 (2017), 509–521 [Quantum Electron., 47:6 (2017), 509–521]

Linking options:
  • http://mi.mathnet.ru/eng/qe16630
  • http://mi.mathnet.ru/eng/qe/v47/i6/p509

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Li Q., Alloncle A.P., Grojo D., Delaporte Ph., “Laser-Induced Nano-Jetting Behaviors of Liquid Metals”, Appl. Phys. A-Mater. Sci. Process., 123:11 (2017), 718  crossref  isi
    2. P. N. Mayer, A. E. Mayer, “Evolution of foamed aluminum melt at high rate tension: a mechanical model based on atomistic simulations”, J. Appl. Phys., 124:3 (2018), 035901  crossref  isi  scopus
    3. S. Makarov, L. Kolotova, S. Starikov, U. Zywietz, B. Chichkov, “Resonant silicon nanoparticles with controllable crystalline states and nonlinear optical responses”, Nanoscale, 10:24 (2018), 11403–11409  crossref  isi  scopus
    4. P. N. Mayer, A. E. Mayer, “Size distribution of pores in metal melts at non-equilibrium cavitation and further stretching, and similarity with the spall fracture of solids”, Int. J. Heat Mass Transf., 127:C (2018), 643–657  crossref  isi  scopus
    5. N. A. Inogamov, V. V. Zhakhovsky, V. A. Khokhlov, “Laser ablation caused by geometrically constrained illumination and inventive target design”, XXXII International Conference on Interaction of Intense Energy Fluxes With Matter (Elbrus 2017), Journal of Physics Conference Series, 946, IOP Publishing Ltd, 2018, 012008  crossref  isi  scopus
    6. Li Q., Grojo D., Alloncle A.-P., Delaporte Ph., “Dynamics of Double-Pulse Laser Printing of Copper Microstructures”, Appl. Surf. Sci., 471 (2019), 627–632  crossref  isi  scopus
    7. Li Q., Grojo D., Alloncle A.-P., Chichkov B., Delaporte Ph., “Digital Laser Micro- and Nanoprinting”, Nanophotonics, 8:1 (2019), 27–44  crossref  isi  scopus
  • Квантовая электроника Quantum Electronics
    Number of views:
    This page:173
    Full text:3
    References:22
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019