Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2017, Volume 47, Number 7, Pages 638–646 (Mi qe16642)  

This article is cited in 8 scientific papers (total in 8 papers)

Nanoparticles

Silicon nanoparticles as contrast agents in the methods of optical biomedical diagnostics

S. V. Zabotnovabc*, F. V. Kashaevb, D. V. Shuleikob, M. B. Gongalskyb, L. A. Golovanb, P. K. Kashkarovabc, D. A. Loginovad, P. D. Agrbad, E. A. Sergeevae, M. Yu. Kirilline

a Russian Research Centre "Kurchatov Institute", Moscow
b Faculty of Physics, Lomonosov Moscow State University
c Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
d Lobachevski State University of Nizhni Novgorod
e Institute of Applied Physics of the Russian Academy of Sciences, Nizhnii Novgorod

Abstract: The efficiency of light scattering by nanoparticles formed using the method of picosecond laser ablation of silicon in water and by nanoparticles of mechanically grinded mesoporous silicon is compared. The ensembles of particles of both types possess the scattering coefficients sufficient to use them as contrast agents in optical coherence tomography (OCT), particularly in the range of wavelengths 700–1000 nm, where the absorption of both silicon and most biological and mimicking tissues is small. According to the Mie theory the main contribution to the scattering in this case is made by the particles having a relatively large size (150–300 nm). In the experiments on visualising the agar phantom surface by means of OCT, the contrast of the medium boundary, provided by nanoparticles amounted to 14 dB and 30 dB for the ablated particles and the porous silicon powder, respectively. The numerical simulation of OCT images of skin in the presence of nanoparticles, confirmed the efficiency of using them as a contrast agent.

Keywords: silicon nanoparticles, pulsed laser ablation, mesoscopic media, spectrophotometry, optical coherence tomography, Monte Carlo method.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-32-20227
Ministry of Education and Science of the Russian Federation 14.Z50.31.0022

* Author to whom correspondence should be addressed

Full text: PDF file (4693 kB)
References: PDF file   HTML file

Materials:
pic_5.pdf 2.1 Mb


English version:
Quantum Electronics, 2017, 47:7, 638–646

Bibliographic databases:

Received: 24.03.2017
Revised: 06.05.2017

Citation: S. V. Zabotnov, F. V. Kashaev, D. V. Shuleiko, M. B. Gongalsky, L. A. Golovan, P. K. Kashkarov, D. A. Loginova, P. D. Agrba, E. A. Sergeeva, M. Yu. Kirillin, “Silicon nanoparticles as contrast agents in the methods of optical biomedical diagnostics”, Kvantovaya Elektronika, 47:7 (2017), 638–646 [Quantum Electron., 47:7 (2017), 638–646]

Linking options:
  • http://mi.mathnet.ru/eng/qe16642
  • http://mi.mathnet.ru/eng/qe/v47/i7/p638

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. M. R. Sha, S. Mathew, S. Udayan, V. P. N. Nampoori, A. Mujeeb, Appl. Phys. B-Lasers Opt., 124:11 (2018), 213  crossref  isi  scopus
    2. S. V. Zabotnov, A. V. Kolchin, F. V. Kashaev, A. V. Skobelkina, V. Yu. Nesterov, D. E. Presnov, L. A. Golovan, P. K. Kashkarov, Tech. Phys. Lett., 45:11 (2019), 1085–1088  crossref  isi
    3. Quantum Electron., 50:1 (2020), 69–75  mathnet  crossref  isi  elib
    4. Quantum Electron., 50:2 (2020), 104–108  mathnet  crossref  isi  elib
    5. D. Dhar, M. Mohan, R. Poddar, Laser Phys., 30:1 (2020), 015601  crossref  isi  scopus
    6. A. V. Skobelkina, F. V. Kashaev, A. V. Kolchin, D. V. Shuleiko, T. P. Kaminskaya, D. E. Presnov, L. V. Golovan, P. K. Kashkarov, Tech. Phys. Lett., 46:7 (2020), 687–690  crossref  isi
    7. V S. Zabotnov , V A. Skobelkina , E. A. Sergeeva, D. A. Kurakina, V A. Khilov , V F. Kashaev , T. P. Kaminskaya, D. E. Presnov, P. D. Agrba, V D. Shuleiko , P. K. Kashkarov, L. A. Golovan, M. Yu. Kirillin, Sensors, 20:17 (2020), 4874  crossref  isi
    8. Quantum Electron., 51:1 (2021), 64–72  mathnet  crossref  isi  elib
  • Квантовая электроника Quantum Electronics
    Number of views:
    This page:1637
    Full text:109
    References:24
    First page:23

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021