Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2002, Volume 32, Number 1, Pages 79–82 (Mi qe2131)  

This article is cited in 12 scientific papers (total in 12 papers)

Laser applications and other topics in quantum electronics

On a plasmon resonance in ellipsoidal nanoparticles

A. A. Oraevskya, A. N. Oraevskyb

a University of Texas Medical Branch, USA
b P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow

Abstract: The dependence of the plasmon resonance frequency of metal ellipsoids of revolution on their eccentricity is calculated. The plasmon resonance shifts to the red with increasing eccentricity and its intensity increases. The resonance intensity increases with decreasing the imaginary part of the dielectric constant of a metal. The plasmon resonance frequency in a suspension of randomly oriented prolate nanoparticles (with a large eccentricity) almost exactly coincides with that in a suspension of oriented particles. These features permit the efficient improvement of the sensitivity and resolving power of optoacoustic tomography by introducing prolate metal nanoparticles into the region of an object under study. The possibility of plasmon resonance narrowing by introducing metal nanoparticles into an amplifying medium is pointed out.

Full text: PDF file (131 kB)

English version:
Quantum Electronics, 2002, 32:1, 79–82

Bibliographic databases:

PACS: 78.67.Bf, 73.22.Lp
Received: 16.10.2001

Citation: A. A. Oraevsky, A. N. Oraevsky, “On a plasmon resonance in ellipsoidal nanoparticles”, Kvantovaya Elektronika, 32:1 (2002), 79–82 [Quantum Electron., 32:1 (2002), 79–82]

Linking options:
  • http://mi.mathnet.ru/eng/qe2131
  • http://mi.mathnet.ru/eng/qe/v32/i1/p79

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. N. Oraevsky, Jetp Lett, 78:1 (2003), 5  mathnet  crossref  adsnasa  isi  scopus
    2. V. S. Zuev, A. V. Frantsesson, D. V. Vlasov, G. Ya. Zueva, Opt Spectrosc, 96:3 (2004), 426  crossref  adsnasa  isi  scopus
    3. V.K. Pustovalov, Laser Phys Lett, 2:8 (2005), 401  crossref  adsnasa  isi  scopus
    4. V. K. Pustovalov, V. A. Babenko, Laser Phys Lett, 2:2 (2005), 84  crossref  mathscinet  adsnasa  isi  scopus
    5. Nabil M. Lawandy, Appl Phys Lett, 90:14 (2007), 143104  crossref  isi  scopus
    6. Yalin Lu, Xiaobing Chen, Appl Phys Lett, 94:19 (2009), 193110  crossref  adsnasa  isi  scopus
    7. D. V. Guzatov, V. V. Klimov, M. Yu. Pikhota, Laser Phys, 2009  crossref  isi  elib  scopus
    8. Anton Liopo, Richard Su, A.A.. Oraevsky, Photoacoustics, 2015  crossref  isi  scopus
    9. Quantum Electron., 46:2 (2016), 155–158  mathnet  crossref  isi  elib
    10. Milekhin A.G., Cherkasova O., Kuznetsov S.A., Milekhin I.A., Rodyakina E.E., Latyshev A.V., Banerjee S., Salvan G., Zahn D.R.T., Beilstein J. Nanotechnol., 8 (2017), 975–981  crossref  isi  scopus
    11. Lavrov I.V., Yakovlev V.B., Tech. Phys., 63:10 (2018), 1435–1444  crossref  isi  scopus
    12. Miloh T., Proc. R. Soc. A-Math. Phys. Eng. Sci., 475:2223 (2019), 20180040  crossref  isi
  • Квантовая электроника Quantum Electronics
    Number of views:
    This page:221
    Full text:152
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021