Kvantovaya Elektronika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Kvantovaya Elektronika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kvantovaya Elektronika, 2002, Volume 32, Number 2, Pages 115–120 (Mi qe2140)  

This article is cited in 15 scientific papers (total in 15 papers)

Control of laser radiation parameters

Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror

V. V. Apollonova, L. M. Vasilyakb, S. Yu. Kazantseva, I. G. Kononova, D. N. Polyakovb, A. V. Saifulina, K. N. Firsova

a Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow
b Institute of Extremal States Thermophysics, Scientific Association for High Temperatures, Russian Academy of Sciences, Moscow

Abstract: The feasibility of producing continuous laser sparks (CLSs) with a resistance per unit length of 100 – 400 Ω cm-1 by focusing radiation from CO2 laser with a conic mirror is demonstrated. The laser energy input per unit length required for this is experimentally found to be equal to ~200 J m-1. The possibility to efficiently control the trajectory of an electric discharge by means of a CLS is demonstrated. A CLS is found to be an analogue of a high-conductivity metal rod during the electric breakdown and electric potential transfer. The effect of polarity in the electric breakdown of air gaps between the CLS plasma channel and a metal rod is discovered and interpreted. The transverse structure of the CLS conductivity is investigated. Most likely the CLS conductivity at the initial stage is due to the photoionisation of air by the radiation of primary nuclei of the optical breakdown.

Full text: PDF file (180 kB)

English version:
Quantum Electronics, 2002, 32:2, 115–120

Bibliographic databases:

PACS: 52.80.Mg, 52.50.Jm, 42.55.Lt
Received: 22.10.2001

Citation: V. V. Apollonov, L. M. Vasilyak, S. Yu. Kazantsev, I. G. Kononov, D. N. Polyakov, A. V. Saifulin, K. N. Firsov, “Electric-discharge guiding by a continuous spark by focusing CO2-laser radiation with a conic mirror”, Kvantovaya Elektronika, 32:2 (2002), 115–120 [Quantum Electron., 32:2 (2002), 115–120]

Linking options:
  • http://mi.mathnet.ru/eng/qe2140
  • http://mi.mathnet.ru/eng/qe/v32/i2/p115

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. Ya. Margolin, N. E. Andreev, L. N. Pyatnitskii, G. V. Shpatakovskaya, Matem. modelirovanie, 15:12 (2003), 81–88  mathnet  zmath
    2. V. D. Zvorykin, A. O. Levchenko, A. G. Molchanov, I. V. Smetanin, N. N. Ustinovskii, Bull Lebedev Phys Inst, 37:2 (2010), 60  crossref  isi  elib  scopus
    3. Pavel Polynkin, Jerome V. Moloney, Appl. Phys. Lett, 99:15 (2011), 151103  crossref  adsnasa  isi  scopus
    4. Quantum Electron., 41:3 (2011), 227–233  mathnet  crossref  adsnasa  isi  elib
    5. Quantum Electron., 42:2 (2012), 130–139  mathnet  crossref  adsnasa  isi  elib
    6. Pavel Polynkin, Bernard Pasenhow, Nicholas Driscoll, Maik Scheller, Ewan Wright, Jerome Moloney, Phys. Rev. A, 86:4 (2012)  crossref  isi  scopus
    7. Quantum Electron., 43:4 (2013), 339–346  mathnet  crossref  adsnasa  isi  elib
    8. V. V. Apollonov, N. V. Pletnev, Tech. Phys, 58:12 (2013), 1770  crossref  isi  elib  scopus
    9. V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, L. V. Seleznev, D. V. Sinitsyn, Plasma Phys. Rep, 41:2 (2015), 112  crossref  isi  elib  scopus
    10. Apollonov V.V., Xx International Symposium on High-Power Laser Systems and Applications 2014, Proceedings of Spie, 9255, eds. Tang C., Chen S., Tang X., Spie-Int Soc Optical Engineering, 2015, 92554K  crossref  isi  scopus
    11. Donchenko V.A. Balandin S.F. Kemel'bekov B.Zh. Myshkin V.F. Khan V.A., Russ. Phys. J., 61:5 (2018), 918–929  crossref  isi  scopus
    12. Apollonov V.: Apollonov, V, High-Conductivity Channels in Space, Springer Series on Atomic Optical and Plasma Physics, 103, Springer, 2018, 95–115  crossref  isi
    13. Apollonov V.: Apollonov, V, High-Conductivity Channels in Space, Springer Series on Atomic Optical and Plasma Physics, 103, Springer, 2018, 149–162  crossref  isi
    14. Woodbury D., Schwartz R.M., Milchberg H.M., Optica, 6:6 (2019), 811–820  crossref  isi
    15. Bogachev N.N., Gusein-zade N.G., Filatova S.A., Kamynin V.A., Kazantsev S.Yu., Podlesnykh S.V., Rogalin V.E., Shokhrin D.V., Trikshev A.I., Tsvetkov V.B., Zhluktova I.V., Proceedings of Spie, 11322, eds. Tarasenko V., Klimkin A., Trigub M., Spie-Int Soc Optical Engineering, 2019, UNSP 113221P  crossref  isi  scopus
  • Квантовая электроника Quantum Electronics
    Number of views:
    This page:213
    Full text:112
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021