Regular and Chaotic Dynamics
General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Regul. Chaotic Dyn.:

Personal entry:
Save password
Forgotten password?

Regul. Chaotic Dyn., 2015, Volume 20, Issue 3, Pages 205–224 (Mi rcd1)  

This article is cited in 14 scientific papers (total in 14 papers)

The Dynamics of Systems with Servoconstraints. I

Valery V. Kozlov

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russia

Abstract: The paper discusses the dynamics of systems with Béghin's servoconstraints where the constraints are realized by means of controlled forces. Classical nonholonomic systems are an important particular case. Special attention is given to the study of motion on Lie groups with left-invariant kinetic energy and left-invariant constraints. The presence of symmetries allows one to reduce the dynamic equations to a closed system of differential equations with quadratic right-hand sides on a Lie algebra. Examples are given which include the rotation of a rigid body with a left-invariant servoconstraint the projection of the angular velocity onto some direction fixed in the body is equal to zero (a generalization of the nonholonomic Suslov problem) and the motion of the Chaplygin sleigh with servoconstraints of a certain type. The dynamics of systems with Béghin's servoconstraints is richer and more varied than the more usual dynamics of nonholonomic systems.

Keywords: servoconstraints, symmetries, Lie groups, left-invariant constraints, systems with quadratic right-hand sides.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
The study was financed by the grant from the Russian Science Foundation (Project No. 14-5000005).


References: PDF file   HTML file

Bibliographic databases:

MSC: 34D20, 70F25, 70Q05
Received: 10.02.2015

Citation: Valery V. Kozlov, “The Dynamics of Systems with Servoconstraints. I”, Regul. Chaotic Dyn., 20:3 (2015), 205–224

Citation in format AMSBIB
\by Valery V. Kozlov
\paper The Dynamics of Systems with Servoconstraints. I
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 3
\pages 205--224

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers Translation

    Related presentations:

    This publication is cited in the following articles:
    1. V. V. Kozlov, “Dinamika sistem s servosvyazyami. II”, Nelineinaya dinam., 11:3 (2015), 579–611  mathnet
    2. Valery V. Kozlov, “The Dynamics of Systems with Servoconstraints. II”, Regul. Chaotic Dyn., 20:4 (2015), 401–427  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    3. V. P. Pavlov, V. M. Sergeev, “Fluid dynamics and thermodynamics as a unified field theory”, Proc. Steklov Inst. Math., 294 (2016), 222–232  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    4. S. Celikovsky, M. Anderle, “Hybrid invariance of the collocated virtual holonomic constraints and its application in underactuated walking”, IFAC-PapersOnLine, 49:18 (2016), 802–807  crossref  mathscinet  isi  scopus
    5. S. Celikovsky, M. Anderle, “On the collocated virtual holonomic constraints in Lagrangian systems”, Proceedings of the American Control Conference, 2016 American Control Conference (ACC), IEEE, 2016, 6030–6035  crossref  isi
    6. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Istoriko-kriticheskii obzor razvitiya negolonomnoi mekhaniki: klassicheskii period”, Nelineinaya dinam., 12:3 (2016), 385–411  mathnet  crossref  zmath  elib
    7. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. H. Kang, C. Liu, Ya.-B. Jia, “Inverse dynamics and energy optimal trajectories for a wheeled mobile robot”, Int. J. Mech. Sci., 134 (2017), 576–588  crossref  isi  scopus
    9. N. S. Sevryugina, M. A. Stepanov, “Vertical transport: resource by the criterion of safety”, Mag. Civ. Eng., 75:7 (2017), 23–36  crossref  isi  scopus
    10. S. Celikovsky, M. Anderle, “Collocated virtual holonomic constraints in Hamiltonian formalism and their application in the underactuated walking”, 2017 11Th Asian Control Conference (ASCC), IEEE, 2017, 192–197  crossref  isi
    11. B. I. Adamov, “A Study of the Controlled Motion of a Four-wheeled Mecanum Platform”, Nelin. Dinam., 14:2 (2018), 265–290  mathnet  crossref  elib
    12. R. G. Mukharlyamov, “Modelling of dynamics of mechanical systems with regard for constraint stabilization”, Fundamental and Applied Problems of Mechanics-2017, IOP Conference Series-Materials Science and Engineering, 468, IOP Publishing Ltd, 2018, 012041  crossref  isi  scopus
    13. I. A. Bizyaev, V A. Borisov , V. V. Kozlov, I. S. Mamaev, “Fermi-like acceleration and power-law energy growth in nonholonomic systems”, Nonlinearity, 32:9 (2019), 3209–3233  crossref  mathscinet  zmath  isi  scopus
    14. R. G. Mukharlyamov, “Control of the dynamics of a system with differential constraints”, J. Comput. Syst. Sci. Int., 58:4 (2019), 515–527  crossref  crossref  zmath  isi  elib  scopus
  • Number of views:
    This page:269

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022