Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regul. Chaotic Dyn., 2019, том 24, выпуск 5, страницы 511–524 (Mi rcd1024)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Sergey Chaplygin Memorial Issue

Nonholonomic Noetherian Symmetries and Integrals of the Routh Sphere and the Chaplygin Ball

Miguel D. Bustamante, Peter Lynch

School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

Аннотация: The dynamics of a spherical body with a non-uniform mass distribution rolling on a plane were discussed by Sergey Chaplygin, whose 150th birthday we celebrate this year. The Chaplygin top is a non-integrable system, with a colourful range of interesting motions. A special case of this system was studied by Edward Routh, who showed that it is integrable. The Routh sphere has a centre of mass offset from the geometric centre, but it has an axis of symmetry through both these points, and equal moments of inertia about all axes orthogonal to the symmetry axis. There are three constants of motion: the total energy and two quantities involving the angular momenta.
It is straightforward to demonstrate that these quantities, known as the Jellett and Routh constants, are integrals of the motion. However, their physical significance has not been fully understood. In this paper, we show how the integrals of the Routh sphere arise from Emmy Noether’s invariance identity. We derive expressions for the infinitesimal symmetry transformations associated with these constants. We find the finite version of these symmetries and provide their geometrical interpretation.
As a further demonstration of the power and utility of this method, we find the Noetherian symmetries and corresponding integrals for a system introduced recently, the Chaplygin ball on a rotating turntable, confirming that the known integrals are directly obtained from Noether’s theorem.

Ключевые слова: Noether’s theorem, nonholonomic systems, symmetry, Routh sphere, Chaplygin ball

DOI: https://doi.org/10.1134/S1560354719050058

Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 37J60, 70E18, 70F25, 70H07, 70H33
Поступила в редакцию: 31.05.2019
Принята в печать:27.08.2019
Язык публикации: английский

Образец цитирования: Miguel D. Bustamante, Peter Lynch, “Nonholonomic Noetherian Symmetries and Integrals of the Routh Sphere and the Chaplygin Ball”, Regul. Chaotic Dyn., 24:5 (2019), 511–524

Цитирование в формате AMSBIB
\RBibitem{BusLyn19}
\by Miguel D. Bustamante, Peter Lynch
\paper Nonholonomic Noetherian Symmetries and Integrals of the Routh Sphere and the Chaplygin Ball
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 5
\pages 511--524
\mathnet{http://mi.mathnet.ru/rcd1024}
\crossref{https://doi.org/10.1134/S1560354719050058}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4015394}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000488949000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073259519}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/rcd1024
  • http://mi.mathnet.ru/rus/rcd/v24/i5/p511

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. A. V. Tsiganov, “On a time-dependent nonholonomic oscillator”, Russ. J. Math. Phys., 27:3 (2020), 399–409  crossref  mathscinet  zmath  isi  scopus
  • Просмотров:
    Эта страница:49
    Литература:5
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021