RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2013, Volume 18, Issue 1-2, Pages 184–193 (Mi rcd104)  

This article is cited in 11 scientific papers (total in 11 papers)

Falling Motion of a Circular Cylinder Interacting Dynamically with a Point Vortex

Sergei V. Sokolov, Sergei M. Ramodanov

Institute of Computer Science, Udmurt State University, 426034, Russia, Izhevsk, Universitetskaya str., 1

Abstract: The dynamical behavior of a heavy circular cylinder and a point vortex in an unbounded volume of ideal liquid is considered. The liquid is assumed to be irrotational and at rest at infinity. The circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit an evident autonomous integral of motion the horizontal component of the linear momentum. Using the integral we reduce the order and thereby obtain a system with two degrees of freedom. The stability of equilibrium solutions is investigated and some remarkable types of partial solutions of the system are presented.

Keywords: point vortices, Hamiltonian systems, reduction, stability of equilibrium solutions

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation NSh-2519.2012.1.
The work of the second author was supported by the Support grant of leading scientific schools NSh-2519.2012.1.


DOI: https://doi.org/10.1134/S1560354713010139

References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
MSC: 70Hxx, 70G65
Received: 11.08.2012
Accepted:14.09.2012
Language: English

Citation: Sergei V. Sokolov, Sergei M. Ramodanov, “Falling Motion of a Circular Cylinder Interacting Dynamically with a Point Vortex”, Regul. Chaotic Dyn., 18:1-2 (2013), 184–193

Citation in format AMSBIB
\Bibitem{SokRam13}
\by Sergei V. Sokolov, Sergei M. Ramodanov
\paper Falling Motion of a Circular Cylinder Interacting Dynamically with a Point Vortex
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 184--193
\mathnet{http://mi.mathnet.ru/rcd104}
\crossref{https://doi.org/10.1134/S1560354713010139}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3040991}
\zmath{https://zbmath.org/?q=an:1273.70022}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000317623400013}


Linking options:
  • http://mi.mathnet.ru/eng/rcd104
  • http://mi.mathnet.ru/eng/rcd/v18/i1/p184

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Sokolov, “Dvizhenie krugovogo tsilindra, vzaimodeistvuyuschego s vikhrevoi paroi, v pole sily tyazhesti v idealnoi zhidkosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, no. 2, 86–99  mathnet
    2. S. V. Sokolov, “Dvizhenie krugovogo tsilindricheskogo tverdogo tela, vzaimodeistvuyuschego s $N$ tochechnymi vikhryami, v pole sily tyazhesti”, Nelineinaya dinam., 10:1 (2014), 59–72  mathnet
    3. Sergey P. Kuznetsov, “Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-dimensional Models”, Regul. Chaotic Dyn., 20:3 (2015), 345–382  mathnet  crossref  mathscinet  zmath  adsnasa
    4. S. V. Sokolov, I. S. Koltsov, “Khaoticheskoe rasseyanie tochechnogo vikhrya krugovym tsilindricheskim tverdym telom, dvizhuschimsya v pole tyazhesti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 25:2 (2015), 184–196  mathnet  elib
    5. S. V. Sokolov, I. S. Koltsov, “Scattering of the point vortex by a falling circular cylinder”, Dokl. Phys., 60:11 (2015), 511–514  crossref  isi  scopus
    6. A. V. Borisov, P. E. Ryabov, S. V. Sokolov, “Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid”, Math. Notes, 99:6 (2016), 834–839  mathnet  crossref  crossref  mathscinet  isi  elib
    7. S. V. Sokolov, “On the problem of falling motion of a circular cylinder and a vortex pair in a perfect fluid”, Dokl. Math., 94:2 (2016), 594–597  crossref  mathscinet  zmath  isi  scopus
    8. Sergei V. Sokolov, Pavel E. Ryabov, “Bifurcation Analysis of the Dynamics of Two Vortices in a Bose Einstein Condensate. The Case of Intensities of Opposite Signs”, Regul. Chaotic Dyn., 22:8 (2017), 976–995  mathnet  crossref
    9. A. A. Oshemkov, P. E. Ryabov, S. V. Sokolov, “Explicit determination of certain periodic motions of a generalized two-field gyrostat”, Russ. J. Math. Phys., 24:4 (2017), 517–525  crossref  mathscinet  zmath  isi  scopus
    10. S. V. Sokolov, “Motion of a cylinder rigid body interacting with point vortices”, Coupled Problems in Science and Engineering VII (Coupled Problems 2017), eds. M. Papadrakakis, E. Onate, B. Schrefler, Int. Center Numerical Methods Engineering, 2017, 204–215  isi
    11. S. V. Sokolov, P. E. Ryabov, “Bifurcation diagram of the two vortices in a Bose–Einstein condensate with intensities of the same signs”, Dokl. Math., 97:3 (2018), 286–290  crossref  zmath  isi  scopus
  • Number of views:
    This page:61
    References:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019