RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regul. Chaotic Dyn., 2020, том 25, выпуск 1, страницы 78–110 (Mi rcd1051)  

Special issue: In honor of Valery Kozlov for his 70th birthday

$N$-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics

Jaime Andradea, Stefanella Boattobc, Thierry Combotd, Gladston Duartecb, Teresinha J. Stuchie

a Departamento de Matemática, Facutad de Ciencias, Universidad del Bıi o-Bıi o, Casilla 5-C, Concepción, VIII-región, Chile
b Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal de Rio de Janeiro, 68530, Rio de Janeiro, RJ, Brazil
c Barcelona Graduate School of Mathematics \& Departament de Matemàtiques i Informática, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007, Barcelona, Spain
d Institut de Mathématiques de Bourgogne, Université de Bourgogne, 21078, Dijon, France
e Departamento de Fıisica-Matemática, Instituto de Fıisica, Universidade Federal de Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Аннотация: The formulation of the dynamics of $N$-bodies on the surface of an infinite cylinder is considered. We have chosen such a surface to be able to study the impact of the surface’s topology in the particle’s dynamics. For this purpose we need to make a choice of how to generalize the notion of gravitational potential on a general manifold. Following Boatto, Dritschel and Schaefer [5], we define a gravitational potential as an attractive central force which obeys Maxwell’s like formulas.
As a result of our theoretical differential Galois theory and numerical study — Poincaré sections, we prove that the two-body dynamics is not integrable. Moreover, for very low energies, when the bodies are restricted to a small region, the topological signature of the cylinder is still present in the dynamics. A perturbative expansion is derived for the force between the two bodies. Such a force can be viewed as the planar limit plus the topological perturbation. Finally, a polygonal configuration of identical masses (identical charges or identical vortices) is proved to be an unstable relative equilibrium for all $N>2$.

Ключевые слова: $N$-body problem, Hodge decomposition, central forces on manifolds, topology and integrability, differential Galois theory, Poincaré sections, stability of relative equilibria

Финансовая поддержка Номер гранта
Comisión Nacional de Investigación Científica y Tecnológica 11180776
Jaime Andrade was partially supported by CONICYT (Chile) through FONDECYT project 11180776. Stefanella Boatto was partially supported by the Luís Santaló Visiting Professor fellowship through CRM (Catalonia, Spain). Gladston Duarte was partially supported by a scholarship from the Coordenacão de Aperfeicoamento de Pessoal de Ensino Superior (CAPES, Brazil), through the Graduate Program (Programa de Pos-graduacão) of the Mathematical Institute of the Federal University of Rio de Janeiro, and by the María de Maeztu Unit of Excellence in Research Program (MTM-2014-0445) through the Barcelona Graduate School of Mathematics (BGSMath).


DOI: https://doi.org/10.1134/S1560354720010086

Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 37J30, 37J25, 53Z05, 70G60, 70H05
Поступила в редакцию: 24.12.2019
Принята в печать:10.01.2020
Язык публикации: английский

Образец цитирования: Jaime Andrade, Stefanella Boatto, Thierry Combot, Gladston Duarte, Teresinha J. Stuchi, “$N$-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics”, Regul. Chaotic Dyn., 25:1 (2020), 78–110

Цитирование в формате AMSBIB
\RBibitem{AndBoaCom20}
\by Jaime Andrade, Stefanella Boatto, Thierry Combot, Gladston Duarte, Teresinha J. Stuchi
\paper $N$-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 1
\pages 78--110
\mathnet{http://mi.mathnet.ru/rcd1051}
\crossref{https://doi.org/10.1134/S1560354720010086}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000515001300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079821983}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/rcd1051
  • http://mi.mathnet.ru/rus/rcd/v25/i1/p78

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:92
    Литература:9
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020