RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2014, Volume 19, Issue 2, Pages 145–161 (Mi rcd106)  

This article is cited in 3 scientific papers (total in 3 papers)

Remarks on Integrable Systems

Valery V. Kozlov

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russia

Abstract: The problem of integrability conditions for systems of differential equations is discussed. Darboux's classical results on the integrability of linear non-autonomous systems with an incomplete set of particular solutions are generalized. Special attention is paid to linear Hamiltonian systems. The paper discusses the general problem of integrability of the systems of autonomous differential equations in an $n$-dimensional space, which admit the algebra of symmetry fields of dimension $\geqslant n$. Using a method due to Liouville, this problem is reduced to investigating the integrability conditions for Hamiltonian systems with Hamiltonians linear in the momenta in phase space of dimension that is twice as large. In conclusion, the integrability of an autonomous system in three-dimensional space with two independent non-trivial symmetry fields is proved. It should be emphasized that no additional conditions are imposed on these fields.

Keywords: integrability by quadratures, adjoint system, Hamiltonian equations, Euler–Jacobi theorem, Lie theorem, symmetries

DOI: https://doi.org/10.1134/S1560354714020014

References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
MSC: 34C14
Received: 02.09.2013
Accepted:23.09.2013
Language: English

Citation: Valery V. Kozlov, “Remarks on Integrable Systems”, Regul. Chaotic Dyn., 19:2 (2014), 145–161

Citation in format AMSBIB
\Bibitem{Koz14}
\by Valery~V.~Kozlov
\paper Remarks on Integrable Systems
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 2
\pages 145--161
\mathnet{http://mi.mathnet.ru/rcd106}
\crossref{https://doi.org/10.1134/S1560354714020014}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3189254}
\zmath{https://zbmath.org/?q=an:06392317}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000334198000001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898763926}


Linking options:
  • http://mi.mathnet.ru/eng/rcd106
  • http://mi.mathnet.ru/eng/rcd/v19/i2/p145

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Valery V. Kozlov, “The Dynamics of Systems with Servoconstraints. II”, Regul. Chaotic Dyn., 20:4 (2015), 401–427  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    2. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Note on Free Symmetric Rigid Body Motion”, Regul. Chaotic Dyn., 20:3 (2015), 293–308  mathnet  crossref  mathscinet  zmath  adsnasa
    3. V. Kozlov, “The phenomenon of reversal in the Euler–Poincaré–Suslov nonholonomic systems”, J. Dyn. Control Syst., 22:4 (2016), 713–724  crossref  mathscinet  zmath  isi  scopus
  • Number of views:
    This page:90
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019