Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regul. Chaotic Dyn., 2020, том 25, выпуск 6, страницы 716–728 (Mi rcd1095)  

On Topological Classification of Gradient-like Flows on an $n$-sphere in the Sense of Topological Conjugacy

Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin

National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia

Аннотация: In this paper, we study gradient-like flows without heteroclinic intersections on an n-sphere up to topological conjugacy. We prove that such a flow is completely defined by a bicolor tree corresponding to a skeleton formed by codimension one separatrices. Moreover, we show that such a tree is a complete invariant for these flows with respect to the topological equivalence also. This result implies that for these flows with the same (up to a change of coordinates) partitions into trajectories, the partitions for elements, composing isotopies connecting time-one shifts of these flows with the identity map, also coincide. This phenomenon strongly contrasts with the situation for flows with periodic orbits and connections, where one class of equivalence contains continuum classes of conjugacy. In addition, we realize every connected bicolor tree by a gradient-like flow without heteroclinic intersections on the $n$-sphere. In addition, we present a linear-time algorithm on the number of vertices for distinguishing these trees.

Ключевые слова: gradient-like flow, topological classification, topological conjugacy, $n$-sphere, lineartime algorithm

Финансовая поддержка Номер гранта
Российский научный фонд 17-11-01041.
Министерство образования и науки Российской Федерации 075-15-2019-1931
Российский фонд фундаментальных исследований 20-31-90067
The realization results were implemented as an output of the RSF project No 17-11-01041. The classification results were obtained with assistance from the Laboratory of Dynamical Systems and Applications NRU HSE of the Ministry of science and Higher Education of the RF grant ag. No 075-15-2019-1931 and the RFBR project No 20-31-90067. The algorithmic results (Theorem 2.7 and its proof) were prepared within the framework of the Basic Research Program at the National Research University “Higher School of Economics” (HSE).


DOI: https://doi.org/10.1134/S1560354720060143

Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 37D15, 37C15
Поступила в редакцию: 14.03.2020
Принята в печать:12.11.2020
Язык публикации: английский

Образец цитирования: Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin, “On Topological Classification of Gradient-like Flows on an $n$-sphere in the Sense of Topological Conjugacy”, Regul. Chaotic Dyn., 25:6 (2020), 716–728

Цитирование в формате AMSBIB
\RBibitem{KruMalPoc20}
\by Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin
\paper On Topological Classification of Gradient-like Flows on an $n$-sphere in the Sense of Topological Conjugacy
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 6
\pages 716--728
\mathnet{http://mi.mathnet.ru/rcd1095}
\crossref{https://doi.org/10.1134/S1560354720060143}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4184423}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000596572500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097234192}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/rcd1095
  • http://mi.mathnet.ru/rus/rcd/v25/i6/p716

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:35
    Литература:6
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021