General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Regul. Chaotic Dyn.:

Personal entry:
Save password
Forgotten password?

Regul. Chaotic Dyn., 2013, Volume 18, Issue 4, Pages 356–371 (Mi rcd117)  

This article is cited in 21 scientific papers (total in 21 papers)

Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere

Alexey V. Borisovabc, Ivan S. Mamaevbca

a Institute of Mathematics and Mechanics of the Ural Branch of RAS, ul. S. Kovalevskoi 16, Yekaterinburg, 620990 Russia
b Institute of Computer Science; Laboratory of Nonlinear Analysis and the Design of New Types of Vehicles, Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
c A. A. Blagonravov Mechanical Engineering Research Institute of RAS, ul. Bardina 4, Moscow, 117334 Russia

Abstract: A new integrable system describing the rolling of a rigid body with a spherical cavity on a spherical base is considered. Previously the authors found the separation of variables for this system on the zero level set of a linear (in angular velocity) first integral, whereas in the general case it is not possible to separate the variables. In this paper we show that the foliation into invariant tori in this problem is equivalent to the corresponding foliation in the Clebsch integrable system in rigid body dynamics (for which no real separation of variables has been found either). In particular, a fixed point of focus type is possible for this system, which can serve as a topological obstacle to the real separation of variables.

Keywords: integrable system, bifurcation diagram, conformally Hamiltonian system, bifurcation, Liouville foliation, critical periodic solution


References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
MSC: 37J60, 37J35, 70E18, 70F25, 70H45
Received: 16.11.2012
Language: English

Citation: Alexey V. Borisov, Ivan S. Mamaev, “Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371

Citation in format AMSBIB
\by Alexey V. Borisov, Ivan S. Mamaev
\paper Topological Analysis of an Integrable System Related to the Rolling of a Ball on a Sphere
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 4
\pages 356--371

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Mikhail P. Kharlamov, “Extensions of the Appelrot Classes for the Generalized Gyrostat in a Double Force Field”, Regul. Chaotic Dyn., 19:2 (2014), 226–244  mathnet  crossref  mathscinet  zmath
    2. Nikolay A. Kudryashov, Dmitry I. Sinelshchikov, “Special Solutions of a High-order Equation for Waves in a Liquid with Gas Bubbles”, Regul. Chaotic Dyn., 19:5 (2014), 576–585  mathnet  crossref  mathscinet  zmath
    3. P. E. Ryabov, A. Yu. Savushkin, “Fazovaya topologiya volchka Kovalevskoi – Sokolova”, Nelineinaya dinam., 11:2 (2015), 287–317  mathnet
    4. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “The Jacobi Integral in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    5. Yu. L. Karavaev, A. A. Kilin, “Dinamika sferorobota s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinam., 11:1 (2015), 187–204  mathnet  elib
    6. Alexander P. Ivanov, “On the Control of a Robot Ball Using Two Omniwheels”, Regul. Chaotic Dyn., 20:4 (2015), 441–448  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    7. Rasoul Akbarzadeh, Ghorbanali Haghighatdoost, “The Topology of Liouville Foliation for the Borisov–Mamaev–Sokolov Integrable Case on the Lie Algebra $so(4)$”, Regul. Chaotic Dyn., 20:3 (2015), 317–344  mathnet  crossref  mathscinet  zmath  adsnasa
    8. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172  mathnet  crossref  mathscinet  zmath  adsnasa
    9. Valery V. Kozlov, “The Dynamics of Systems with Servoconstraints. II”, Regul. Chaotic Dyn., 20:4 (2015), 401–427  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    10. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Hamiltonization of elementary nonholonomic systems”, Russ. J. Math. Phys., 22:4 (2015), 444–453  crossref  mathscinet  zmath  isi  scopus
    11. Yury L. Karavaev, Alexander A. Kilin, “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    12. A. V. Borisov, P. E. Ryabov, S. V. Sokolov, “Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid”, Math. Notes, 99:6 (2016), 834–839  mathnet  crossref  crossref  mathscinet  isi  elib
    13. Rasoul Akbarzadeh, “Topological Analysis Corresponding to the Borisov–Mamaev–Sokolov Integrable System on the Lie Algebra $so(4)$”, Regul. Chaotic Dyn., 21:1 (2016), 1–17  mathnet  crossref  mathscinet  zmath
    14. Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65  mathnet  crossref  mathscinet  zmath
    15. Pavel E. Ryabov, Andrej A. Oshemkov, Sergei V. Sokolov, “The Integrable Case of Adler – van Moerbeke. Discriminant Set and Bifurcation Diagram”, Regul. Chaotic Dyn., 21:5 (2016), 581–592  mathnet  crossref  mathscinet  zmath
    16. Alexey V. Borisov, Alexey O. Kazakov, Elena N. Pivovarova, “Regular and Chaotic Dynamics in the Rubber Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7-8 (2016), 885–901  mathnet  crossref
    17. Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “Spiral Chaos in the Nonholonomic Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7-8 (2016), 939–954  mathnet  crossref
    18. Ioan Caşu, Cristian Lăzureanu, “Stability and Integrability Aspects for the Maxwell–Bloch Equations with the Rotating Wave Approximation”, Regul. Chaotic Dyn., 22:2 (2017), 109–121  mathnet  crossref
    19. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    20. Sergei V. Sokolov, Pavel E. Ryabov, “Bifurcation Analysis of the Dynamics of Two Vortices in a Bose – Einstein Condensate. The Case of Intensities of Opposite Signs”, Regul. Chaotic Dyn., 22:8 (2017), 976–995  mathnet  crossref
    21. B. Jovanovic, “Rolling balls over spheres in $\mathbb{R}^n$”, Nonlinearity, 31:9 (2018), 4006–4030  crossref  mathscinet  zmath  isi  scopus
  • Number of views:
    This page:49

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019