Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regul. Chaotic Dyn., 2013, том 18, выпуск 5, страницы 508–520 (Mi rcd136)  

Эта публикация цитируется в 35 научных статьях (всего в 35 статьях)

Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane

Alexey O. Kazakovab

a The Research Institute of Applied Mathematics and Cybernetics, Nizhny Novgorod State University, pr. Gagarina 23, Nizhny Novgorod, 603950, Russia
b Institute of computer science, ul. Universitetskaya 1, Izhevsk, 426034, Russia

Аннотация: We consider the dynamics of an unbalanced rubber ball rolling on a rough plane. The term rubber means that the vertical spinning of the ball is impossible. The roughness of the plane means that the ball moves without slipping. The motions of the ball are described by a nonholonomic system reversible with respect to several involutions whose number depends on the type of displacement of the center of mass. This system admits a set of first integrals, which helps to reduce its dimension. Thus, the use of an appropriate two-dimensional Poincaré map is enough to describe the dynamics of our system. We demonstrate for this system the existence of complex chaotic dynamics such as strange attractors and mixed dynamics. The type of chaotic behavior depends on the type of reversibility. In this paper we describe the development of a strange attractor and then its basic properties. After that we show the existence of another interesting type of chaos — the so-called mixed dynamics. In numerical experiments, a set of criteria by which the mixed dynamics may be distinguished from other types of dynamical chaos in two-dimensional maps is given.

Ключевые слова: mixed dynamics, strange attractor, unbalanced ball, rubber rolling, reversibility, two-dimensional Poincaré map, bifurcation, focus, saddle, invariant manifolds, homoclinic tangency, Lyapunov’s exponents

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 13-01-00589
13-01-97028-povolzhye
Министерство образования и науки Российской Федерации 14.B37.21.0361
14.B37.21.0863
This work was supported by the RFBR grants №13-01-00589 and 13-01-97028-povolzhye, the Federal Target Program “Personnel” №14.B37.21.0361, and by the Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (Contract №14.B37.21.0863).


DOI: https://doi.org/10.1134/S1560354713050043

Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 37J60, 37N15, 37G35
Поступила в редакцию: 30.05.2013
Принята в печать:03.09.2013
Язык публикации: английский

Образец цитирования: Alexey O. Kazakov, “Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane”, Regul. Chaotic Dyn., 18:5 (2013), 508–520

Цитирование в формате AMSBIB
\RBibitem{Kaz13}
\by Alexey O. Kazakov
\paper Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 5
\pages 508--520
\mathnet{http://mi.mathnet.ru/rcd136}
\crossref{https://doi.org/10.1134/S1560354713050043}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3117259}
\zmath{https://zbmath.org/?q=an:06292756}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000325810200004}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/rcd136
  • http://mi.mathnet.ru/rus/rcd/v18/i5/p508

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Alexander S. Gonchenko, Sergey V. Gonchenko, Alexey O. Kazakov, “Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538  mathnet  crossref  mathscinet  zmath
    2. Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733  mathnet  crossref  mathscinet  zmath
    3. И. А. Бизяев, “О неинтегрируемости и препятствиях к гамильтонизации неголономного волчка Чаплыгина”, Докл. РАН, 458:4 (2014), 398–401  crossref  elib; I. A. Bizyaev, “Nonintegrability and obstructions to the Hamiltonianization of a nonholonomic Chaplygin top”, Dokl. Math., 90:2 (2014), 631–634  crossref  mathscinet  zmath  isi  scopus
    4. A. Gonchenko, S. Gonchenko, A. Kazakov, D. Turaev, “Simple scenarios of onset of chaos in three-dimensional maps”, Int. J. Bifurcation Chaos, 24:8 (2014), 1440005  crossref  mathscinet  zmath  isi  scopus
    5. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “The Jacobi Integral in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    6. Ю. Л. Караваев, А. А. Килин, “Динамика сфероробота с внутренней омниколесной платформой”, Нелинейная динам., 11:1 (2015), 187–204  mathnet  elib
    7. Nikolay A. Kudryashov, “Analytical Solutions of the Lorenz System”, Regul. Chaotic Dyn., 20:2 (2015), 123–133  mathnet  crossref  mathscinet  zmath  adsnasa
    8. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172  mathnet  crossref  mathscinet  zmath  adsnasa
    9. Alexander P. Kuznetsov, Natalia A. Migunova, Igor R. Sataev, Yuliya V. Sedova, Ludmila V. Turukina, “From Chaos to Quasi-Periodicity”, Regul. Chaotic Dyn., 20:2 (2015), 189–204  mathnet  crossref  mathscinet  zmath  adsnasa
    10. А. А. Килин, Е. В. Ветчанин, “Управление движением твердого тела в жидкости с помощью двух подвижных масс”, Нелинейная динам., 11:4 (2015), 633–645  mathnet
    11. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Hamiltonization of elementary nonholonomic systems”, Russ. J. Math. Phys., 22:4 (2015), 444–453  crossref  mathscinet  zmath  isi  scopus
    12. A. Delshams, M. Gonchenko, S. Gonchenko, “On dynamics and bifurcations of area-preserving maps with homoclinic tangencies”, Nonlinearity, 28:9 (2015), 3027–3071  crossref  mathscinet  zmath  isi  scopus
    13. A. S. Gonchenko, S. V. Gonchenko, “Retracted: Lorenz-like attractors in a nonholonomic model of a rattleback”, Nonlinearity, 28:9 (2015), 3403–3417; retracted article, 30 (2017), c3  crossref  mathscinet  zmath  isi  scopus
    14. Yury L. Karavaev, Alexander A. Kilin, “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    15. Ivan A. Bizyaev, Alexey V. Borisov, Alexey O. Kazakov, “Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626  mathnet  crossref  mathscinet  zmath  elib
    16. И. Р. Сатаев, А. О. Казаков, “Сценарии перехода к хаосу в неголономной модели волчка Чаплыгина”, Нелинейная динам., 12:2 (2016), 235–250  mathnet  elib
    17. Е. В. Ветчанин, А. А. Килин, “Управляемое движение твердого тела с внутренними механизмами в идеальной несжимаемой жидкости”, Современные проблемы механики, Сборник статей, Труды МИАН, 295, МАИК «Наука/Интерпериодика», М., 2016, 321–351  mathnet  crossref  mathscinet  elib; E. V. Vetchanin, A. A. Kilin, “Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid”, Proc. Steklov Inst. Math., 295 (2016), 302–332  crossref  isi
    18. V. Kozlov, “The phenomenon of reversal in the Euler–Poincaré–Suslov nonholonomic systems”, J. Dyn. Control Syst., 22:4 (2016), 713–724  crossref  mathscinet  zmath  isi  scopus
    19. E. V. Vetchanin, A. O. Kazakov, “Bifurcations and chaos in the dynamics of two point vortices in an acoustic wave”, Int. J. Bifurcation Chaos, 26:4 (2016), 1650063  crossref  mathscinet  zmath  isi  scopus
    20. И. А. Бизяев, А. В. Борисов, А. О. Казаков, “Динамика задачи Суслова в поле тяжести: реверс и странные аттракторы”, Нелинейная динам., 12:2 (2016), 263–287  mathnet  mathscinet  elib
    21. Alexey V. Borisov, Alexey O. Kazakov, Elena N. Pivovarova, “Regular and Chaotic Dynamics in the Rubber Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7-8 (2016), 885–901  mathnet  crossref
    22. С. В. Гонченко, Д. В. Тураев, “О трех типах динамики и понятии аттрактора”, Порядок и хаос в динамических системах, Сборник статей. К 80-летию со дня рождения академика Дмитрия Викторовича Аносова, Труды МИАН, 297, МАИК «Наука/Интерпериодика», М., 2017, 133–157  mathnet  crossref  mathscinet  elib; S. V. Gonchenko, D. V. Turaev, “On three types of dynamics and the notion of attractor”, Proc. Steklov Inst. Math., 297 (2017), 116–137  crossref  isi
    23. A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, D. V. Turaev, “On the phenomenon of mixed dynamics in Pikovsky–Topaj system of coupled rotators”, Physica D, 350 (2017), 45–57  crossref  mathscinet  zmath  isi  scopus
    24. А. В. Борисов, А. О. Казаков, Е. Н. Пивоварова, “Регулярная и хаотическая динамика в «резиновой» модели волчка Чаплыгина”, Нелинейная динам., 13:2 (2017), 277–297  mathnet  crossref  elib
    25. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “An Invariant Measure and the Probability of a Fall in the Problem of an Inhomogeneous Disk Rolling on a Plane”, Regul. Chaotic Dyn., 23:6 (2018), 665–684  mathnet  crossref  mathscinet
    26. Gonchenko A.S. Samylina E.A., “On the Region of Existence of a Discrete Lorenz Attractor in the Nonholonomic Model of a Celtic Stone”, Radiophys. Quantum Electron., 62:5 (2019), 369–384  crossref  isi  scopus
    27. Emelianova A.A. Nekorkin V.I., “On the Intersection of a Chaotic Attractor and a Chaotic Repeller in the System of Two Adaptively Coupled Phase Oscillators”, Chaos, 29:11 (2019), 111102  crossref  mathscinet  zmath  isi  scopus
    28. Gonchenko A.S. Gonchenko S.V. Kazakov A.O. Samylina E.A., “Chaotic Dynamics and Multistability in the Nonholonomic Model of a Celtic Stone”, Radiophys. Quantum Electron., 61:10 (2019), 773–786  crossref  isi  scopus
    29. Kazakov A.O., “On the Appearance of Mixed Dynamics as a Result of Collision of Strange Attractors and Repellers in Reversible Systems”, Radiophys. Quantum Electron., 61:8-9 (2019), 650–658  crossref  isi  scopus
    30. С. В. Гонченко, М. С. Гонченко, И. О. Синицкий, “О смешанной динамике двумерных обратимых диффеоморфизмов с симметричными негрубыми гетероклиническими контурами”, Изв. РАН. Сер. матем., 84:1 (2020), 27–59  mathnet  crossref  mathscinet; S. V. Gonchenko, M. S. Gonchenko, I. O. Sinitsky, “On mixed dynamics of two-dimensional reversible diffeomorphisms with symmetric non-transversal heteroclinic cycles”, Izv. Math., 84:1 (2020), 23–51  crossref  isi  elib
    31. С. В. Гонченко, А. С. Гонченко, А. О. Казаков, “Три типа аттракторов и смешанная динамика неголономных моделей движения твердого тела”, Дифференциальные уравнения и динамические системы, Сборник статей, Труды МИАН, 308, МИАН, М., 2020, 135–151  mathnet  crossref  mathscinet; S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, “Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion”, Proc. Steklov Inst. Math., 308 (2020), 125–140  crossref  isi  elib
    32. Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706  mathnet  crossref  mathscinet
    33. Bizyaev I.A. Mamaev I.S., “Separatrix Splitting and Nonintegrability in the Nonholonomic Rolling of a Generalized Chaplygin Sphere”, Int. J. Non-Linear Mech., 126 (2020), 103550  crossref  mathscinet  isi  scopus
    34. Emelianova A.A. Nekorkin V.I., “the Third Type of Chaos in a System of Two Adaptively Coupled Phase Oscillators”, Chaos, 30:5 (2020)  crossref  mathscinet  zmath  isi  scopus
    35. Kazakov A., “Merger of a Henon-Like Attractor With a Henon-Like Repeller in a Model of Vortex Dynamics”, Chaos, 30:1 (2020), 011105  crossref  mathscinet  zmath  isi  scopus
  • Просмотров:
    Эта страница:95
    Литература:19
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021