Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2013, Volume 18, Issue 5, Pages 521–538 (Mi rcd137)  

This article is cited in 57 scientific papers (total in 58 papers)

Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone

Alexander S. Gonchenkoa, Sergey V. Gonchenkoa, Alexey O. Kazakovab

a Research Institute of Applied Mathematics and Cybernetics, Nizhny Novgorod State University, ul. Ul’yanova 10, Nizhny Novgorod, 603005 Russia
b Institute of Computer Science, ul. Universitetskaya 1, Izhevsk, 426034 Russia

Abstract: We study the regular and chaotic dynamics of two nonholonomic models of a Celtic stone. We show that in the first model (the so-called BM-model of a Celtic stone) the chaotic dynamics arises sharply, during a subcritical period doubling bifurcation of a stable limit cycle, and undergoes certain stages of development under the change of a parameter including the appearance of spiral (Shilnikov-like) strange attractors and mixed dynamics. For the second model, we prove (numerically) the existence of Lorenz-like attractors (we call them discrete Lorenz attractors) and trace both scenarios of development and break-down of these attractors.

Keywords: celtic stone, nonholonomic model, strange attractor, discrete Lorenz attractor, Shilnikov-like spiral attractor, mixed dynamics

Funding Agency Grant Number
Russian Foundation for Basic Research 11-01-00001
13-01-00589
13-01-97028-povolzhye
Ministry of Education and Science of the Russian Federation 14.B37.21.0361
14.B37.21.0863
This work was supported by the RFBR grants ¹11-01-00001, 13-01-00589 and 13-01-97028-povolzhye, the Federal Target Program “Personnel” ¹14.B37.21.0361, and by the Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (Contract ¹14.B37.21.0863).


DOI: https://doi.org/10.1134/S1560354713050055

References: PDF file   HTML file

Bibliographic databases:

MSC: 37J60, 37N15, 37G35
Received: 25.06.2013
Accepted:12.09.2013
Language:

Citation: Alexander S. Gonchenko, Sergey V. Gonchenko, Alexey O. Kazakov, “Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538

Citation in format AMSBIB
\Bibitem{GonGonKaz13}
\by Alexander S. Gonchenko, Sergey V. Gonchenko, Alexey O. Kazakov
\paper Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 5
\pages 521--538
\mathnet{http://mi.mathnet.ru/rcd137}
\crossref{https://doi.org/10.1134/S1560354713050055}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3117260}
\zmath{https://zbmath.org/?q=an:06292757}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000325810200005}


Linking options:
  • http://mi.mathnet.ru/eng/rcd137
  • http://mi.mathnet.ru/eng/rcd/v18/i5/p521

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Alexey O. Kazakov, “Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane”, Regul. Chaotic Dyn., 18:5 (2013), 508–520  mathnet  crossref  mathscinet  zmath
    2. Sergey V. Gonchenko, Ivan I. Ovsyannikov, Joan C. Tatjer, “Birth of Discrete Lorenz Attractors at the Bifurcations of 3D Maps with Homoclinic Tangencies to Saddle Points”, Regul. Chaotic Dyn., 19:4 (2014), 495–505  mathnet  crossref  mathscinet  zmath
    3. Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733  mathnet  crossref  mathscinet  zmath
    4. A. Gonchenko, S. Gonchenko, A. Kazakov, D. Turaev, “Simple scenarios of onset of chaos in three-dimensional maps”, Int. J. Bifurcation Chaos, 24:8 (2014), 1440005  crossref  mathscinet  zmath  isi  scopus
    5. S. P. Kuznetsov, “On the validity of the nonholonomic model of the rattleback”, Phys. Usp., 58:12 (2015), 1223–1224  mathnet  crossref  crossref  adsnasa  isi  elib
    6. Yury L. Karavaev, Alexander A. Kilin, “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    7. Nikolay A. Kudryashov, “Analytical Solutions of the Lorenz System”, Regul. Chaotic Dyn., 20:2 (2015), 123–133  mathnet  crossref  mathscinet  zmath  adsnasa
    8. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172  mathnet  crossref  mathscinet  zmath  adsnasa
    9. Alexander P. Kuznetsov, Natalia A. Migunova, Igor R. Sataev, Yuliya V. Sedova, Ludmila V. Turukina, “From Chaos to Quasi-Periodicity”, Regul. Chaotic Dyn., 20:2 (2015), 189–204  mathnet  crossref  mathscinet  zmath  adsnasa
    10. I. A. Bizyaev, A. Bolsinov, A. Borisov, I. Mamaev, “Topology and bifurcations in nonholonomic mechanics”, Int. J. Bifurcation Chaos, 25:10 (2015), 1530028  crossref  mathscinet  zmath  isi  scopus
    11. A. Delshams, M. Gonchenko, S. Gonchenko, “On dynamics and bifurcations of area-preserving maps with homoclinic tangencies”, Nonlinearity, 28:9 (2015), 3027–3071  crossref  mathscinet  zmath  isi  scopus
    12. A. S. Gonchenko, S. V. Gonchenko, “Retracted: Lorenz-like attractors in a nonholonomic model of a rattleback”, Nonlinearity, 28:9 (2015), 3403–3417  crossref  mathscinet  zmath  isi  scopus; retracted article see 30 (2017), c3
    13. Yu. L. Karavaev, A. A. Kilin, “Dinamika sferorobota s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinam., 11:1 (2015), 187–204  mathnet  elib
    14. Ivan A. Bizyaev, Alexey V. Borisov, Alexey O. Kazakov, “Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626  mathnet  crossref  mathscinet  zmath  elib
    15. I. R. Sataev, A. O. Kazakov, “Stsenarii perekhoda k khaosu v negolonomnoi modeli volchka Chaplygina”, Nelineinaya dinam., 12:2 (2016), 235–250  mathnet  elib
    16. Sergey P. Kuznetsov, Vyacheslav P. Kruglov, “Verification of Hyperbolicity for Attractors of Some Mechanical Systems with Chaotic Dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 160–174  mathnet  crossref  mathscinet
    17. Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “Spiral Chaos in the Nonholonomic Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7-8 (2016), 939–954  mathnet  crossref
    18. A. S. Gonchenko, S. V. Gonchenko, “Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps”, Physica D, 337 (2016), 43–57  crossref  mathscinet  zmath  isi  scopus
    19. V. Kozlov, “The phenomenon of reversal in the Euler–Poincaré–Suslov nonholonomic systems”, J. Dyn. Control Syst., 22:4 (2016), 713–724  crossref  mathscinet  zmath  isi  scopus
    20. E. V. Vetchanin, A. O. Kazakov, “Bifurcations and chaos in the dynamics of two point vortices in an acoustic wave”, Int. J. Bifurcation Chaos, 26:4 (2016), 1650063  crossref  mathscinet  zmath  isi  scopus
    21. A. S. Gonchenko, A. D. Kozlov, “O stsenariyakh vozniknoveniya khaosa v trekhmernykh neorientiruemykh otobrazheniyakh”, Zhurnal SVMO, 18:4 (2016), 17–29  mathnet  elib
    22. I. A. Bizyaev, A. V. Borisov, A. O. Kazakov, “Dinamika zadachi Suslova v pole tyazhesti: revers i strannye attraktory”, Nelineinaya dinam., 12:2 (2016), 263–287  mathnet  mathscinet  elib
    23. S. P. Kuznetsov, V. P. Kruglov, “On some simple examples of mechanical systems with hyperbolic chaos”, Proc. Steklov Inst. Math., 297 (2017), 208–234  mathnet  crossref  crossref  mathscinet  isi  elib
    24. S. V. Gonchenko, D. V. Turaev, “On three types of dynamics and the notion of attractor”, Proc. Steklov Inst. Math., 297 (2017), 116–137  mathnet  crossref  crossref  mathscinet  isi  elib
    25. Stefan Rauch-Wojciechowski, Maria Przybylska, “Understanding Reversals of a Rattleback”, Regul. Chaotic Dyn., 22:4 (2017), 368–385  mathnet  crossref
    26. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    27. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975  mathnet  crossref
    28. A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, D. V. Turaev, “On the phenomenon of mixed dynamics in Pikovsky–Topaj system of coupled rotators”, Physica D, 350 (2017), 45–57  crossref  mathscinet  zmath  isi  scopus
    29. A. S. Gonchenko, S. V. Gonchenko, “Retraction: Lorenz-like attractors in a nonholonomic model of a rattleback (2015 Nonlinearity 28 3403)”, Nonlinearity, 30:4 (2017), C3  crossref  mathscinet  zmath  isi  scopus
    30. S. P. Kuznetsov, “Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint”, EPL, 118:1 (2017), 10007  crossref  mathscinet  isi  scopus
    31. S. Gonchenko, I. Ovsyannikov, “Homoclinic tangencies to resonant saddles and discrete Lorenz attractors”, Discret. Contin. Dyn. Syst.-Ser. S, 10:2 (2017), 273–288  crossref  mathscinet  zmath  isi  scopus
    32. I. I. Ovsyannikov, V. D. Turaev, “Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model”, Nonlinearity, 30:1 (2017), 115–137  crossref  mathscinet  zmath  isi  scopus
    33. A. D. Kozlov, “Primery strannykh attraktorov v trekhmernykh neorientiruemykh otobrazheniyakh”, Zhurnal SVMO, 19:2 (2017), 62–75  mathnet  crossref  elib
    34. Sergey P. Kuznetsov, “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192  mathnet  crossref
    35. S. Mobayen, F. Tchier, “Synchronization of a class of uncertain chaotic systems with Lipschitz nonlinearities using state-feedback control design: a matrix inequality approach”, Asian J. Control, 20:1 (2018), 71–85  crossref  mathscinet  zmath  isi  scopus
    36. J. S. Eilertsen, J. F. Magnan, “Asymptotically exact codimension-four dynamics and bifurcations in two-dimensional thermosolutal convection at high thermal Rayleigh number: chaos from a quasi-periodic homoclinic explosion and quasi-periodic intermittency”, Physica D, 382 (2018), 1–21  crossref  mathscinet  zmath  isi  scopus
    37. A. S. Conchenko, V S. Conchenko, V O. Kazakovt, A. D. Kozlov, “Elements of contemporary theory of dynamical chaos: a tutorial. Part I. Pseudohyperbolic attractors”, Int. J. Bifurcation Chaos, 28:11 (2018), 1830036  crossref  mathscinet  isi  scopus
    38. J. Eilertsen, J. Magnan, “On the chaotic dynamics associated with the center manifold equations of double-diffusive convection near a codimension-four bifurcation point at moderate thermal Rayleigh number”, Int. J. Bifurcation Chaos, 28:8 (2018), 1850094  crossref  mathscinet  zmath  isi  scopus
    39. A. O. Kazakov, A. D. Kozlov, “Nesimmetrichnyi attraktor Lorentsa kak primer novogo psevdogiperbolicheskogo attraktora v trekhmernykh sistemakh”, Zhurnal SVMO, 20:2 (2018), 187–198  mathnet  crossref
    40. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “A Parabolic Chaplygin Pendulum and a Paul Trap: Nonintegrability, Stability, and Boundedness”, Regul. Chaotic Dyn., 24:3 (2019), 329–352  mathnet  crossref
    41. Vyacheslav P. Kruglov, Sergey P. Kuznetsov, “Topaj – Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators”, Regul. Chaotic Dyn., 24:6 (2019), 725–738  mathnet  crossref  mathscinet
    42. Gonchenko A.S. Samylina E.A., “On the Region of Existence of a Discrete Lorenz Attractor in the Nonholonomic Model of a Celtic Stone”, Radiophys. Quantum Electron., 62:5 (2019), 369–384  crossref  isi  scopus
    43. Emelianova A.A., Nekorkin V.I., “On the Intersection of a Chaotic Attractor and a Chaotic Repeller in the System of Two Adaptively Coupled Phase Oscillators”, Chaos, 29:11 (2019), 111102  crossref  mathscinet  zmath  isi  scopus
    44. Borisov V A. Vetchanin E.V. Mamaev I.S., “Motion of a Smooth Foil in a Fluid Under the Action of External Periodic Forces. i”, Russ. J. Math. Phys., 26:4 (2019), 412–427  crossref  mathscinet  zmath  isi  scopus
    45. Bizyaev I.A. Borisov V A. Kozlov V.V. Mamaev I.S., “Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems”, Nonlinearity, 32:9 (2019), 3209–3233  crossref  mathscinet  zmath  isi  scopus
    46. Gonchenko A.S. Gonchenko S.V. Kazakov A.O. Samylina E.A., “Chaotic Dynamics and Multistability in the Nonholonomic Model of a Celtic Stone”, Radiophys. Quantum Electron., 61:10 (2019), 773–786  crossref  isi  scopus
    47. Awrejcewicz J., Kudra G., “Rolling Resistance Modelling in the Celtic Stone Dynamics”, Multibody Syst. Dyn., 45:2 (2019), 155–167  crossref  mathscinet  isi  scopus
    48. S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, A. D. Kozlov, Yu. V. Bakhanova, “Matematicheskaya teoriya dinamicheskogo khaosa i ee prilozheniya: Obzor. Chast 2. Spiralnyi khaos trekhmernykh potokov”, Izvestiya vuzov. PND, 27:5 (2019), 7–52  mathnet  crossref  isi  elib  scopus
    49. Kazakov A.O., “On the Appearance of Mixed Dynamics as a Result of Collision of Strange Attractors and Repellers in Reversible Systems”, Radiophys. Quantum Electron., 61:8-9 (2019), 650–658  crossref  isi  scopus
    50. Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236  mathnet  crossref
    51. S. V. Gonchenko, A. S. Gonchenko, A. O. Kazakov, “Three Types of Attractors and Mixed Dynamics of Nonholonomic Models of Rigid Body Motion”, Proc. Steklov Inst. Math., 308 (2020), 125–140  mathnet  crossref  crossref  mathscinet  isi  elib
    52. Bizyaev I.A. Mamaev I.S., “Separatrix Splitting and Nonintegrability in the Nonholonomic Rolling of a Generalized Chaplygin Sphere”, Int. J. Non-Linear Mech., 126 (2020), 103550  crossref  mathscinet  isi  scopus
    53. Kuznetsov S.P. Kruglov V.P. Borisov A.V., “Chaplygin Sleigh in the Quadratic Potential Field”, EPL, 132:2 (2020), 20008  crossref  isi  scopus
    54. Chigarev V. Kazakov A. Pikovsky A., “Kantorovich-Rubinstein-Wasserstein Distance Between Overlapping Attractor and Repeller”, Chaos, 30:7 (2020)  crossref  mathscinet  zmath  isi  scopus
    55. Emelianova A.A. Nekorkin V.I., “the Third Type of Chaos in a System of Two Adaptively Coupled Phase Oscillators”, Chaos, 30:5 (2020)  crossref  mathscinet  zmath  isi  scopus
    56. Kazakov A., “Merger of a Henon-Like Attractor With a Henon-Like Repeller in a Model of Vortex Dynamics”, Chaos, 30:1 (2020), 011105  crossref  mathscinet  zmath  isi  scopus
    57. Borisov A.V. Vetchanin E.V. Mamaev I.S., “Motion of a Smooth Foil in a Fluid Under the Action of External Periodic Forces. II”, Russ. J. Math. Phys., 27:1 (2020), 1–17  crossref  mathscinet  zmath  isi  scopus
    58. E. Kuryzhov, E. Karatetskaia, D. Mints, “Lorenz- and Shilnikov-Shape Attractors in the Model of Two Coupled Parabola Maps”, Rus. J. Nonlin. Dyn., 17:2 (2021), 165–174  mathnet  crossref
  • Number of views:
    This page:173
    References:36

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021