RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2013, Volume 18, Issue 5, Pages 521–538 (Mi rcd137)  

This article is cited in 31 scientific papers (total in 32 papers)

Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone

Alexander S. Gonchenkoa, Sergey V. Gonchenkoa, Alexey O. Kazakovab

a Research Institute of Applied Mathematics and Cybernetics, Nizhny Novgorod State University, ul. Ul’yanova 10, Nizhny Novgorod, 603005 Russia
b Institute of Computer Science, ul. Universitetskaya 1, Izhevsk, 426034 Russia

Abstract: We study the regular and chaotic dynamics of two nonholonomic models of a Celtic stone. We show that in the first model (the so-called BM-model of a Celtic stone) the chaotic dynamics arises sharply, during a subcritical period doubling bifurcation of a stable limit cycle, and undergoes certain stages of development under the change of a parameter including the appearance of spiral (Shilnikov-like) strange attractors and mixed dynamics. For the second model, we prove (numerically) the existence of Lorenz-like attractors (we call them discrete Lorenz attractors) and trace both scenarios of development and break-down of these attractors.

Keywords: celtic stone, nonholonomic model, strange attractor, discrete Lorenz attractor, Shilnikov-like spiral attractor, mixed dynamics

Funding Agency Grant Number
Russian Foundation for Basic Research 11-01-00001
13-01-00589
13-01-97028-povolzhye
Ministry of Education and Science of the Russian Federation 14.B37.21.0361
14.B37.21.0863
This work was supported by the RFBR grants ¹11-01-00001, 13-01-00589 and 13-01-97028-povolzhye, the Federal Target Program “Personnel” ¹14.B37.21.0361, and by the Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (Contract ¹14.B37.21.0863).


DOI: https://doi.org/10.1134/S1560354713050055

References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
MSC: 37J60, 37N15, 37G35
Received: 25.06.2013
Language: English

Citation: Alexander S. Gonchenko, Sergey V. Gonchenko, Alexey O. Kazakov, “Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone”, Regul. Chaotic Dyn., 18:5 (2013), 521–538

Citation in format AMSBIB
\Bibitem{GonGonKaz13}
\by Alexander S. Gonchenko, Sergey V. Gonchenko, Alexey O. Kazakov
\paper Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 5
\pages 521--538
\mathnet{http://mi.mathnet.ru/rcd137}
\crossref{https://doi.org/10.1134/S1560354713050055}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3117260}
\zmath{https://zbmath.org/?q=an:06292757}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000325810200005}


Linking options:
  • http://mi.mathnet.ru/eng/rcd137
  • http://mi.mathnet.ru/eng/rcd/v18/i5/p521

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Alexey O. Kazakov, “Strange Attractors and Mixed Dynamics in the Problem of an Unbalanced Rubber Ball Rolling on a Plane”, Regul. Chaotic Dyn., 18:5 (2013), 508–520  mathnet  crossref  mathscinet  zmath
    2. Sergey V. Gonchenko, Ivan I. Ovsyannikov, Joan C. Tatjer, “Birth of Discrete Lorenz Attractors at the Bifurcations of 3D Maps with Homoclinic Tangencies to Saddle Points”, Regul. Chaotic Dyn., 19:4 (2014), 495–505  mathnet  crossref  mathscinet  zmath
    3. Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “The Reversal and Chaotic Attractor in the Nonholonomic Model of Chaplygin’s Top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733  mathnet  crossref  mathscinet  zmath
    4. A. Gonchenko, S. Gonchenko, A. Kazakov, D. Turaev, “Simple scenarios of onset of chaos in three-dimensional maps”, Int. J. Bifurcation Chaos, 24:8 (2014), 1440005  crossref  mathscinet  zmath  isi  scopus
    5. S. P. Kuznetsov, “On the validity of the nonholonomic model of the rattleback”, Phys. Usp., 58:12 (2015), 1223–1224  mathnet  crossref  crossref  adsnasa  isi  elib
    6. Yury L. Karavaev, Alexander A. Kilin, “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    7. Nikolay A. Kudryashov, “Analytical Solutions of the Lorenz System”, Regul. Chaotic Dyn., 20:2 (2015), 123–133  mathnet  crossref  mathscinet  zmath  adsnasa
    8. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172  mathnet  crossref  mathscinet  zmath  adsnasa
    9. Alexander P. Kuznetsov, Natalia A. Migunova, Igor R. Sataev, Yuliya V. Sedova, Ludmila V. Turukina, “From Chaos to Quasi-Periodicity”, Regul. Chaotic Dyn., 20:2 (2015), 189–204  mathnet  crossref  mathscinet  zmath  adsnasa
    10. Ivan A. Bizyaev, Alexey V. Borisov, Alexey O. Kazakov, “Dynamics of the Suslov Problem in a Gravitational Field: Reversal and Strange Attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626  mathnet  crossref  mathscinet  zmath  elib
    11. I. A. Bizyaev, A. Bolsinov, A. Borisov, I. Mamaev, “Topology and bifurcations in nonholonomic mechanics”, Int. J. Bifurcation Chaos, 25:10 (2015), 1530028  crossref  mathscinet  zmath  isi  scopus
    12. A. Delshams, M. Gonchenko, S. Gonchenko, “On dynamics and bifurcations of area-preserving maps with homoclinic tangencies”, Nonlinearity, 28:9 (2015), 3027–3071  crossref  mathscinet  zmath  isi  scopus
    13. A. S. Gonchenko, S. V. Gonchenko, “Retracted: Lorenz-like attractors in a nonholonomic model of a rattleback”, Nonlinearity, 28:9 (2015), 3403–3417  crossref  mathscinet  zmath  isi  scopus; retracted article see 30 (2017), c3
    14. Yu. L. Karavaev, A. A. Kilin, “Dinamika sferorobota s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinam., 11:1 (2015), 187–204  mathnet  elib
    15. I. R. Sataev, A. O. Kazakov, “Stsenarii perekhoda k khaosu v negolonomnoi modeli volchka Chaplygina”, Nelineinaya dinam., 12:2 (2016), 235–250  mathnet  elib
    16. Sergey P. Kuznetsov, Vyacheslav P. Kruglov, “Verification of Hyperbolicity for Attractors of Some Mechanical Systems with Chaotic Dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 160–174  mathnet  crossref  mathscinet
    17. Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “Spiral Chaos in the Nonholonomic Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7-8 (2016), 939–954  mathnet  crossref
    18. A. S. Gonchenko, S. V. Gonchenko, “Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps”, Physica D, 337 (2016), 43–57  crossref  mathscinet  zmath  isi  scopus
    19. V. Kozlov, “The phenomenon of reversal in the Euler–Poincaré–Suslov nonholonomic systems”, J. Dyn. Control Syst., 22:4 (2016), 713–724  crossref  mathscinet  zmath  isi  scopus
    20. E. V. Vetchanin, A. O. Kazakov, “Bifurcations and chaos in the dynamics of two point vortices in an acoustic wave”, Int. J. Bifurcation Chaos, 26:4 (2016), 1650063  crossref  mathscinet  zmath  isi  scopus
    21. S. P. Kuznetsov, V. P. Kruglov, “On some simple examples of mechanical systems with hyperbolic chaos”, Proc. Steklov Inst. Math., 297 (2017), 208–234  mathnet  crossref  crossref  mathscinet  isi  elib
    22. S. V. Gonchenko, D. V. Turaev, “On three types of dynamics and the notion of attractor”, Proc. Steklov Inst. Math., 297 (2017), 116–137  mathnet  crossref  crossref  mathscinet  isi  elib
    23. Stefan Rauch-Wojciechowski, Maria Przybylska, “Understanding Reversals of a Rattleback”, Regul. Chaotic Dyn., 22:4 (2017), 368–385  mathnet  crossref
    24. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    25. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975  mathnet  crossref
    26. A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, D. V. Turaev, “On the phenomenon of mixed dynamics in Pikovsky–Topaj system of coupled rotators”, Physica D, 350 (2017), 45–57  crossref  mathscinet  zmath  isi  scopus
    27. A. S. Gonchenko, S. V. Gonchenko, “Retraction: Lorenz-like attractors in a nonholonomic model of a rattleback (2015 Nonlinearity 28 3403)”, Nonlinearity, 30:4 (2017), C3  crossref  mathscinet  zmath  isi  scopus
    28. S. P. Kuznetsov, “Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint”, EPL, 118:1 (2017), 10007  crossref  mathscinet  isi  scopus
    29. S. Gonchenko, I. Ovsyannikov, “Homoclinic tangencies to resonant saddles and discrete Lorenz attractors”, Discret. Contin. Dyn. Syst.-Ser. S, 10:2 (2017), 273–288  crossref  mathscinet  zmath  isi  scopus
    30. I. I. Ovsyannikov, V. D. Turaev, “Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model”, Nonlinearity, 30:1 (2017), 115–137  crossref  mathscinet  zmath  isi  scopus
    31. Sergey P. Kuznetsov, “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192  mathnet  crossref
    32. S. Mobayen, F. Tchier, “Synchronization of a class of uncertain chaotic systems with Lipschitz nonlinearities using state-feedback control design: a matrix inequality approach”, Asian J. Control, 20:1 (2018), 71–85  crossref  mathscinet  zmath  isi  scopus
  • Number of views:
    This page:73
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019