RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2014, Volume 19, Issue 3, Pages 296–309 (Mi rcd148)  

This article is cited in 5 scientific papers (total in 5 papers)

A Rigid Body on a Surface with Random Roughness

Daniil Burlakova, Dmitry Treschevb

a Lomonosov Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
b Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, Moscow, 119991 Russia

Abstract: Consider an interval on a horizontal line with random roughness. With probability one it is supported at two points: one on the left, and another on the right from its center. We compute the probability distribution of the support points provided the roughness is fine grained. We also solve an analogous problem where a circle or a disk lies on a rough plane. Some applications in static are given.

Keywords: rigid body, support with random roughness

Funding Agency Grant Number
Russian Foundation for Basic Research 12-01-00441-a
13-01-12462
Ministry of Education and Science of the Russian Federation NSh-2519.2012.1
Russian Academy of Sciences - Federal Agency for Scientific Organizations
The research is supported by the grants NSh-2519.2012.1, RFBR grant 12-01-00441-a, the program of Russian Academy of Science “Dynamical systems and Control theory”, and the OFI-m grant 13-01-12462.


DOI: https://doi.org/10.1134/S1560354714030034

References: PDF file   HTML file

Bibliographic databases:

MSC: 47N30, 70C20
Received: 10.04.2014
Accepted:23.04.2014
Language:

Citation: Daniil Burlakov, Dmitry Treschev, “A Rigid Body on a Surface with Random Roughness”, Regul. Chaotic Dyn., 19:3 (2014), 296–309

Citation in format AMSBIB
\Bibitem{BurTre14}
\by Daniil~Burlakov, Dmitry Treschev
\paper A Rigid Body on a Surface with Random Roughness
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 3
\pages 296--309
\mathnet{http://mi.mathnet.ru/rcd148}
\crossref{https://doi.org/10.1134/S1560354714030034}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3215691}
\zmath{https://zbmath.org/?q=an:1309.70006}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000337051600003}


Linking options:
  • http://mi.mathnet.ru/eng/rcd148
  • http://mi.mathnet.ru/eng/rcd/v19/i3/p296

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Vladimir Dragović, Borislav Gajić, “Four-Dimensional Generalization of the Grioli Precession”, Regul. Chaotic Dyn., 19:6 (2014), 656–662  mathnet  crossref  mathscinet  zmath
    2. Yu. L. Karavaev, A. A. Kilin, “Dinamika sferorobota s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinam., 11:1 (2015), 187–204  mathnet  elib
    3. Yury L. Karavaev, Alexander A. Kilin, “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    4. A. V. Borisov, I. S. Mamaev, N. N. Erdakova, “Dynamics of a body sliding on a rough plane and supported at three points”, Theor. Appl. Mech., 43:2 (2016), 169–190  crossref  isi  scopus
    5. A. A. Zobova, “A review of models of distributed dry friction”, J. Appl. Math. Mech., 80:2 (2016), 141–148  crossref  mathscinet  isi  scopus
  • Number of views:
    This page:90
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019