RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regul. Chaotic Dyn., 2014, том 19, выпуск 3, страницы 415–434 (Mi rcd163)  

Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)

Superintegrable Generalizations of the Kepler and Hook Problems

Ivan A. Bizyaeva, Alexey V. Borisovabc, Ivan S. Mamaevad

a Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b A. A. Blagonravov Mechanical Engineering Research Institute of RAS, Bardina str. 4, Moscow, 117334, Russia
c National Research Nuclear University “MEPhI”, Kashirskoye shosse 31, Moscow, 115409, Russia
d Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990, Russia

Аннотация: In this paper we consider superintegrable systems which are an immediate generalization of the Kepler and Hook problems, both in two-dimensional spaces — the plane $\mathbb{R}^2$ and the sphere $S^2$ — and in three-dimensional spaces $\mathbb{R}^3$ and $S^3$. Using the central projection and the reduction procedure proposed in [21], we show an interrelation between the superintegrable systems found previously and show new ones. In all cases the superintegrals are presented in explicit form.

Ключевые слова: superintegrable systems, Kepler and Hook problems, isomorphism, central projection, reduction, highest degree polynomial superintegrals

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 13-01-12462-ofi_m
14-01-00395-a
The work of A.V. Borisov was done within the framework of the State assignment of the Udmurt State University “Regular and Chaotic Dynamics”. The work of I.S.Mamaev was supported by the grant of the RFBR 13-01-12462-ofi m, and the work of I.A.Bizyaev was supported by the grant of the RFBR 14-01-00395-a.


DOI: https://doi.org/10.1134/S1560354714030095

Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 70H06, 70G10, 37J35
Поступила в редакцию: 27.03.2014
Принята в печать:13.05.2014
Язык публикации: английский

Образец цитирования: Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Superintegrable Generalizations of the Kepler and Hook Problems”, Regul. Chaotic Dyn., 19:3 (2014), 415–434

Цитирование в формате AMSBIB
\RBibitem{BizBorMam14}
\by Ivan~A.~Bizyaev, Alexey~V.~Borisov, Ivan~S.~Mamaev
\paper Superintegrable Generalizations of the Kepler and Hook Problems
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 3
\pages 415--434
\mathnet{http://mi.mathnet.ru/rcd163}
\crossref{https://doi.org/10.1134/S1560354714030095}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3215697}
\zmath{https://zbmath.org/?q=an:1309.70020}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000337051600009}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/rcd163
  • http://mi.mathnet.ru/rus/rcd/v19/i3/p415

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. И. А. Бизяев, “Об одном обобщении систем типа Калоджеро”, Нелинейная динам., 10:2 (2014), 209–212  mathnet
    2. Andrey V. Tsiganov, “Killing Tensors with Nonvanishing Haantjes Torsion and Integrable Systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    3. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Hamiltonization of elementary nonholonomic systems”, Russ. J. Math. Phys., 22:4 (2015), 444–453  crossref  mathscinet  zmath  isi  scopus
    4. A. Ballesteros, A. Blasco, F. J. Herranz, F. Musso, “An integrable Hénon–Heiles system on the sphere and the hyperbolic plane”, Nonlinearity, 28:11 (2015), 3789–3801  crossref  mathscinet  zmath  isi  scopus
    5. А. В. Цыганов, “О двух интегрируемых системах с интегралами движения четвертой степени”, ТМФ, 186:3 (2016), 443–455  mathnet  crossref  mathscinet  adsnasa  elib; A. V. Tsiganov, “Two integrable systems with integrals of motion of degree four”, Theoret. and Math. Phys., 186:3 (2016), 383–394  crossref  isi
    6. Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity”, Regul. Chaotic Dyn., 21:5 (2016), 556–580  mathnet  crossref  mathscinet  zmath  elib
    7. M. F. Ranada, “Superintegrable systems with a position dependent mass: Kepler-related and oscillator-related systems”, Phys. Lett. A, 380:27-28 (2016), 2204–2210  crossref  mathscinet  zmath  isi  scopus
    8. Galliano Valent, “Superintegrable Models on Riemannian Surfaces of Revolution with Integrals of any Integer Degree (I)”, Regul. Chaotic Dyn., 22:4 (2017), 319–352  mathnet  crossref
    9. M. Santoprete, Sh. Hu, “Suslov Problem with the Clebsch–Tisserand Potential”, Regul. Chaotic Dyn., 23:2 (2018), 193–211  mathnet  crossref
    10. G. Gubbiotti, D. Latini, “A multiple scales approach to maximal superintegrability”, J. Phys. A-Math. Theor., 51:28 (2018), 285201  crossref  mathscinet  zmath  isi  scopus
  • Просмотров:
    Эта страница:67
    Литература:24

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019