RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2014, Volume 19, Issue 4, Pages 506–512 (Mi rcd177)  

This article is cited in 3 scientific papers (total in 3 papers)

On the Dynamical Coherence of Structurally Stable 3-diffeomorphisms

Vyacheslav Z. Grines, Yulia A. Levchenko, Vladislav S. Medvedev, Olga V. Pochinka

Nizhny Novgorod State University, pr. Gagarina 23, Nizhny Novgorod, 603950 Russia

Abstract: We prove that each structurally stable diffeomorphism $f$ on a closed 3-manifold $M^3$ with a two-dimensional surface nonwandering set is topologically conjugated to some model dynamically coherent diffeomorphism.

Keywords: structural stability, surface basic set, partial hyperbolicity, dynamical coherence

Funding Agency Grant Number
Russian Foundation for Basic Research 12-01- 00672-a
13-01-12452-ofi-m
This work was supported by the Russian Foundation for Basic Research (project nos. 12-01-00672-a, 13-01-12452-ofi-m).


DOI: https://doi.org/10.1134/S1560354714040066

References: PDF file   HTML file

Bibliographic databases:

MSC: 37D20, 37D30
Received: 20.03.2014
Accepted:05.05.2014
Language:

Citation: Vyacheslav Z. Grines, Yulia A. Levchenko, Vladislav S. Medvedev, Olga V. Pochinka, “On the Dynamical Coherence of Structurally Stable 3-diffeomorphisms”, Regul. Chaotic Dyn., 19:4 (2014), 506–512

Citation in format AMSBIB
\Bibitem{GriLevMed14}
\by Vyacheslav~Z.~Grines, Yulia~A.~Levchenko, Vladislav~S.~Medvedev, Olga~V.~Pochinka
\paper On the Dynamical Coherence of Structurally Stable 3-diffeomorphisms
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 4
\pages 506--512
\mathnet{http://mi.mathnet.ru/rcd177}
\crossref{https://doi.org/10.1134/S1560354714040066}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3240983}
\zmath{https://zbmath.org/?q=an:1335.37010}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000340380900006}


Linking options:
  • http://mi.mathnet.ru/eng/rcd177
  • http://mi.mathnet.ru/eng/rcd/v19/i4/p506

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. Z. Grines, Ye. V. Zhuzhoma, O. V. Pochinka, “Rough diffeomorphisms with basic sets of codimension one”, Journal of Mathematical Sciences, 225:2 (2017), 195–219  mathnet  crossref
    2. V. Z. Grines, T. V. Medvedev, O. V. Pochinka, “Introduction to Dynamical Systems”, Dynamical Systems on 2- and 3-Manifolds, Developments in Mathematics, 46, Springler, 2016, 1–26  crossref  mathscinet  isi
    3. Vyacheslav Z. Grines, Elena Ya. Gurevich, Olga V. Pochinka, “On the Number of Heteroclinic Curves of Diffeomorphisms with Surface Dynamics”, Regul. Chaotic Dyn., 22:2 (2017), 122–135  mathnet  crossref
  • Number of views:
    This page:64
    References:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020