RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2014, Volume 19, Issue 6, Pages 681–693 (Mi rcd191)  

This article is cited in 1 scientific paper (total in 1 paper)

Hyperbolic Sets near Homoclinic Loops to a Saddle for Systems with a First Integral

Dmitry Turaevab

a Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, Nizhny Novgorod, 603950 Russia
b Imperial College, London, SW7 2AZ UK

Abstract: A complete description of dynamics in a neighborhood of a finite bunch of homoclinic loops to a saddle equilibrium state of a Hamiltonian system is given.

Keywords: Hamiltonian system, nonintegrability and chaos, resonance crossing, Arnold diffusion

Funding Agency Grant Number
Russian Science Foundation 14-41-00044
The work was supported by RSF grant 14-41-00044


DOI: https://doi.org/10.1134/S1560354714060069

References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
MSC: 37J30, 37J40, 37D05, 37C29
Received: 01.10.2014
Language: English

Citation: Dmitry Turaev, “Hyperbolic Sets near Homoclinic Loops to a Saddle for Systems with a First Integral”, Regul. Chaotic Dyn., 19:6 (2014), 681–693

Citation in format AMSBIB
\Bibitem{Tur14}
\by Dmitry~Turaev
\paper Hyperbolic Sets near Homoclinic Loops to a Saddle for Systems with a First Integral
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 6
\pages 681--693
\mathnet{http://mi.mathnet.ru/rcd191}
\crossref{https://doi.org/10.1134/S1560354714060069}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3284608}
\zmath{https://zbmath.org/?q=an:06507826}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000345996200006}


Linking options:
  • http://mi.mathnet.ru/eng/rcd191
  • http://mi.mathnet.ru/eng/rcd/v19/i6/p681

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
  • Number of views:
    This page:44
    References:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019