Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2016, Volume 21, Issue 5, Pages 510–521 (Mi rcd200)  

This article is cited in 3 scientific papers (total in 3 papers)

Connecting Orbits of Lagrangian Systems in a Nonstationary Force Field

Alexey V. Ivanov

Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034 Russia

Abstract: We study connecting orbits of a natural Lagrangian system defined on a complete Riemannian manifold subjected to the action of a nonstationary force field with potential $U(q, t) = f(t)V (q)$. It is assumed that the factor $f(t)$ tends to $\infty$ as $t\to\pm\infty$ and vanishes at a unique point $t_{0} \in \mathbb{R}$. Let $X_{+}$, $X_{-}$ denote the sets of isolated critical points of $V(x)$ at which $U(x, t)$ as a function of $x$ distinguishes its maximum for any fixed $t > t_{0}$ and $t < t_{0}$, respectively. Under nondegeneracy conditions on points of $X_\pm$ we prove the existence of infinitely many doubly asymptotic trajectories connecting $X_{-}$ and $X_{+}$.

Keywords: connecting orbits, homoclinic and heteroclinic orbits, nonautonomous Lagrangian system, variational method

DOI: https://doi.org/10.1134/S1560354716050026

References: PDF file   HTML file

Bibliographic databases:

MSC: 37J45, 34C37, 70H03
Received: 10.05.2016
Accepted:09.08.2016
Language:

Citation: Alexey V. Ivanov, “Connecting Orbits of Lagrangian Systems in a Nonstationary Force Field”, Regul. Chaotic Dyn., 21:5 (2016), 510–521

Citation in format AMSBIB
\Bibitem{Iva16}
\by Alexey V. Ivanov
\paper Connecting Orbits of Lagrangian Systems in a Nonstationary Force Field
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 5
\pages 510--521
\mathnet{http://mi.mathnet.ru/rcd200}
\crossref{https://doi.org/10.1134/S1560354716050026}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000385167300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84990943363}


Linking options:
  • http://mi.mathnet.ru/eng/rcd200
  • http://mi.mathnet.ru/eng/rcd/v21/i5/p510

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Alexey V. Ivanov, “Connecting Orbits near the Adiabatic Limit of Lagrangian Systems with Turning Points”, Regul. Chaotic Dyn., 22:5 (2017), 479–501  mathnet  crossref
    2. V A. Ivanov, “Transversal connecting orbits of Lagrangian systems with turning points: Newton-Kantorovich method”, 2018 Days on Diffraction (DD), eds. O. Motygin, A. Kiselev, L. Goray, A. Kazakov, A. Kirpichnikova, M. Perel, IEEE, 2018, 149–154  crossref  isi
    3. Alexey V. Ivanov, “On Transversal Connecting Orbits of Lagrangian Systems in a Nonstationary Force Field: the Newton Kantorovich Approach”, Regul. Chaotic Dyn., 24:4 (2019), 392–417  mathnet  crossref  mathscinet
  • Number of views:
    This page:80
    References:15

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022