RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2017, Volume 22, Issue 2, Pages 163–179 (Mi rcd249)  

This article is cited in 6 scientific papers (total in 6 papers)

Bäcklund Transformations for the Nonholonomic Veselova System

Andrey V. Tsiganov

St. Petersburg State University, ul. Ulyanovskaya 1, St. Petersburg, 198504 Russia

Abstract: We present auto and hetero Bäcklund transformations of the nonholonomic Veselova system using standard divisor arithmetic on the hyperelliptic curve of genus two. As a by-product one gets two natural integrable systems on the cotangent bundle to the unit two-dimensional sphere whose additional integrals of motion are polynomials in the momenta of fourth order.

Keywords: nonholonomic dynamical system, bi-Hamiltonian geometry, Bäcklund transformations

Funding Agency Grant Number
Russian Science Foundation 15-11-30007
This work was supported by the Russian Science Foundation (project No. 15-11-30007).


DOI: https://doi.org/10.1134/S1560354717020058

References: PDF file   HTML file

Bibliographic databases:

MSC: 37J60, 37K20, 37J35, 70H33
Received: 20.01.2017
Accepted:27.02.2017
Language:

Citation: Andrey V. Tsiganov, “Bäcklund Transformations for the Nonholonomic Veselova System”, Regul. Chaotic Dyn., 22:2 (2017), 163–179

Citation in format AMSBIB
\Bibitem{Tsi17}
\by Andrey V. Tsiganov
\paper Bäcklund Transformations for the Nonholonomic Veselova System
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 2
\pages 163--179
\mathnet{http://mi.mathnet.ru/rcd249}
\crossref{https://doi.org/10.1134/S1560354717020058}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000398060800005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017033669}


Linking options:
  • http://mi.mathnet.ru/eng/rcd249
  • http://mi.mathnet.ru/eng/rcd/v22/i2/p163

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Andrey V. Tsiganov, “Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball”, Regul. Chaotic Dyn., 22:4 (2017), 353–367  mathnet  crossref
    2. A. V. Tsiganov, “Backlund transformations and divisor doubling”, J. Geom. Phys., 126:SI (2018), 148–158  crossref  mathscinet  zmath  isi  scopus
    3. A. V. Tsiganov, “Duffing Oscillator and Elliptic Curve Cryptography”, Nelineinaya dinam., 14:2 (2018), 235–241  mathnet  crossref  elib
    4. A. V. Tsiganov, “Discretization of Hamiltonian systems and intersection theory”, Theoret. and Math. Phys., 197:3 (2018), 1806–1822  mathnet  crossref  crossref  adsnasa  isi  elib
    5. A. V. Tsiganov, “On Discretization of the Euler Top”, Regul. Chaotic Dyn., 23:6 (2018), 785–796  mathnet  crossref
    6. A. V. Tsiganov, “On exact discretization of cubic-quintic Duffing oscillator”, J. Math. Phys., 59:7 (2018), 072703  crossref  mathscinet  zmath  isi  scopus
  • Number of views:
    This page:80
    References:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019