RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2012, Volume 17, Issue 6, Pages 547–558 (Mi rcd267)  

This article is cited in 14 scientific papers (total in 14 papers)

Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid

Sergey M. Ramodanova, Valentin A. Tenenevb, Dmitry V. Treschevcd

a Institute of Computer Research, Udmurt State University, 426034, Russia, Izhevsk, Universitetskaya str., 1
b Izhevsk State Technical University, Studencheskaya 7, Izhevsk, 426069 Russia
c Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina st. 8, Moscow, 119991, Russia
d M. V. Lomonosov Moscow State University, Vorob’evy gory, Moscow, 119899, Russia

Abstract: We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

Keywords: perfect fluid, self-propulsion, Flettner rotor.

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 11.G34.31.0039
NSh-2519.2012.1
This research was done at the Udmurt State University and was supported by the Grant Program of the Government of the Russian Federation for state support of scientific research conducted under the supervision of leading scientists at Russian institutions of higher professional education (Contract No11.G34.31.0039). The work of the first and the third authors was supported by the Support grant of leading scientific schools NSh-2519.2012.1.


DOI: https://doi.org/10.1134/S1560354712060068


Bibliographic databases:

MSC: 70Hxx, 70G65
Received: 01.09.2011
Accepted:24.09.2011
Language:

Citation: Sergey M. Ramodanov, Valentin A. Tenenev, Dmitry V. Treschev, “Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid”, Regul. Chaotic Dyn., 17:6 (2012), 547–558

Citation in format AMSBIB
\Bibitem{RamTenTre12}
\by Sergey M. Ramodanov, Valentin A. Tenenev, Dmitry V. Treschev
\paper Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 6
\pages 547--558
\mathnet{http://mi.mathnet.ru/rcd267}
\crossref{https://doi.org/10.1134/S1560354712060068}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3001100}
\zmath{https://zbmath.org/?q=an:06148383}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2012RCD....17..547R}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000312216300006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876081373}


Linking options:
  • http://mi.mathnet.ru/eng/rcd267
  • http://mi.mathnet.ru/eng/rcd/v17/i6/p547

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Evgeny V. Vetchanin, Ivan S. Mamaev, Valentin A. Tenenev, “The Self-propulsion of a Body with Moving Internal Masses in a Viscous Fluid”, Regul. Chaotic Dyn., 18:1-2 (2013), 100–117  mathnet  crossref  mathscinet  zmath
    2. Vladimir Dragović, Borislav Gajić, “Four-Dimensional Generalization of the Grioli Precession”, Regul. Chaotic Dyn., 19:6 (2014), 656–662  mathnet  crossref  mathscinet  zmath
    3. A. A. Kilin, E. V. Vetchanin, “Upravlenie dvizheniem tverdogo tela v zhidkosti s pomoschyu dvukh podvizhnykh mass”, Nelineinaya dinam., 11:4 (2015), 633–645  mathnet
    4. Yury L. Karavaev, Alexander A. Kilin, Anton V. Klekovkin, “Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot”, Regul. Chaotic Dyn., 21:7-8 (2016), 918–926  mathnet  crossref
    5. Anatolii I. Klenov, Alexander A. Kilin, “Influence of Vortex Structures on the Controlled Motion of an Above-water Screwless Robot”, Regul. Chaotic Dyn., 21:7-8 (2016), 927–938  mathnet  crossref
    6. Borisov A.V. Kuznetsov S.P. Mamaev I.S. Tenenev V.A., “Describing the Motion of a Body With An Elliptical Cross Section in a Viscous Uncompressible Fluid By Model Equations Reconstructed From Data Processing”, Tech. Phys. Lett., 42:9 (2016), 886–890  crossref  isi  scopus
    7. Vetchanin E.V. Kilin A.A., “Free and Controlled Motion of a Body With a Moving Internal Mass Through a Fluid in the Presence of Circulation Around the Body”, Dokl. Phys., 61:1 (2016), 32–36  mathnet  crossref  mathscinet  isi  scopus
    8. Nuriev A.N., Zakharova O.S., Zaitseva O.N., Yunusova A.I., “The Study of the Wedge-Shaped Vibration-Driven Robot Motion in a Viscous Fluid Forced By Different Oscillation Laws of the Internal Mass”, 11Th International Conference on Mesh Methods For Boundry-Value Problems and Applications, IOP Conference Series-Materials Science and Engineering, 158, IOP Publishing Ltd, 2016, UNSP 012072  crossref  isi  scopus
    9. A. N. Nuriev, A. I. Yunusova, O. N. Zaitseva, “Modelirovanie peremescheniya klinovidnogo vibrorobota v vyazkoi zhidkosti pri razlichnykh zakonakh dvizheniya vnutrennei massy v pakete OpenFOAM”, Trudy ISP RAN, 29:1 (2017), 101–118  mathnet  crossref  elib
    10. Vetchanin E.V. Kilin A.A., “Control of Body Motion in An Ideal Fluid Using the Internal Mass and the Rotor in the Presence of Circulation Around the Body”, J. Dyn. Control Syst., 23:2 (2017), 435–458  crossref  mathscinet  zmath  isi  scopus
    11. Alexey V. Borisov, Ivan S. Mamaev, Eugeny V. Vetchanin, “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502  mathnet  crossref  mathscinet
    12. A. A. Kilin, A. I. Klenov, V. A. Tenenev, “Upravlenie dvizheniem tela s pomoschyu vnutrennikh mass v vyazkoi zhidkosti”, Kompyuternye issledovaniya i modelirovanie, 10:4 (2018), 445–460  mathnet  crossref
    13. Ivan S. Mamaev, Evgeny V. Vetchanin, “The Self-propulsion of a Foil with a Sharp Edge in a Viscous Fluid Under the Action of a Periodically Oscillating Rotor”, Regul. Chaotic Dyn., 23:7-8 (2018), 875–886  mathnet  crossref
    14. I. S. Mamaev, V. A. Tenenev, E. V. Vetchanin, “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Nelineinaya dinam., 14:4 (2018), 473–494  mathnet  crossref
  • Number of views:
    This page:66

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019