RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2017, Volume 22, Issue 7, Pages 880–892 (Mi rcd297)  

Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case

Rodrigo Gutierrez, Claudio Vidal

Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, VIII-Región, Chile

Abstract: This paper concerns with the study of the stability of one equilibrium solution of an autonomous analytic Hamiltonian system in a neighborhood of the equilibrium point with $1$-degree of freedom in the degenerate case $H= q^4+ H_5+ H_6+\ldots$. Our main results complement the study initiated by Markeev in [9].

Keywords: Hamiltonian system, equilibrium solution, type of stability, normal form, critical cases, Lyapunovís Theorem, Chetaevís Theorem

DOI: https://doi.org/10.1134/S1560354717070097

References: PDF file   HTML file

Bibliographic databases:

MSC: 37C75, 34D20, 34A25
Received: 17.08.2017
Accepted:04.12.2017
Language:

Citation: Rodrigo Gutierrez, Claudio Vidal, “Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case”, Regul. Chaotic Dyn., 22:7 (2017), 880–892

Citation in format AMSBIB
\Bibitem{GutVid17}
\by Rodrigo Gutierrez, Claudio Vidal
\paper Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 7
\pages 880--892
\mathnet{http://mi.mathnet.ru/rcd297}
\crossref{https://doi.org/10.1134/S1560354717070097}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000425980500009}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042483855}


Linking options:
  • http://mi.mathnet.ru/eng/rcd297
  • http://mi.mathnet.ru/eng/rcd/v22/i7/p880

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:81
    References:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020