RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2018, Volume 23, Issue 2, Pages 193–211 (Mi rcd318)  

Suslov Problem with the Clebsch傍isserand Potential

Shengda Hu, Manuele Santoprete

Department of Mathematics, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada

Abstract: In this paper, we study a nonholonomic mechanical system, namely, the Suslov problem with the Clebsch傍isserand potential. We analyze the topology of the level sets defined by the integrals in two ways: using an explicit construction and as a consequence of the Poincaré蓬opf theorem. We describe the flow on such manifolds.

Keywords: Suslov Problem, topology of level sets, nonholonomic systems, rigid body, Chaplygin systems

Funding Agency
The research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants (SH, MS).


DOI: https://doi.org/10.1134/S1560354718020053

References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
MSC: 70F25,70G40,37J60,37J35
Received: 01.09.2017
Accepted:29.11.2017
Language: English

Citation: Shengda Hu, Manuele Santoprete, “Suslov Problem with the Clebsch傍isserand Potential”, Regul. Chaotic Dyn., 23:2 (2018), 193–211

Citation in format AMSBIB
\Bibitem{HuSan18}
\by Shengda Hu, Manuele Santoprete
\paper Suslov Problem with the Clebsch傍isserand Potential
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 2
\pages 193--211
\mathnet{http://mi.mathnet.ru/rcd318}
\crossref{https://doi.org/10.1134/S1560354718020053}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000429363300005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045004653}


Linking options:
  • http://mi.mathnet.ru/eng/rcd318
  • http://mi.mathnet.ru/eng/rcd/v23/i2/p193

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:24
    References:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019