General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Regul. Chaotic Dyn.:

Personal entry:
Save password
Forgotten password?

Regul. Chaotic Dyn., 2018, Volume 23, Issue 4, Pages 372–388 (Mi rcd329)  

This article is cited in 6 scientific papers (total in 6 papers)

Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot

Yang Baia, Mikhail Svininb, Motoji Yamamotoa

a Mechanical Engineering Department, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
b College of Information Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan

Abstract: This paper deals with the dynamics and motion planning for a spherical rolling robot with a pendulum actuated by two motors. First, kinematic and dynamic models for the rolling robot are introduced. In general, not all feasible kinematic trajectories of the rolling carrier are dynamically realizable. A notable exception is when the contact trajectories on the sphere and on the plane are geodesic lines. Based on this consideration, a motion planning strategy for complete reconfiguration of the rolling robot is proposed. The strategy consists of two trivial movements and a nontrivial maneuver that is based on tracing multiple spherical triangles. To compute the sizes and the number of triangles, a reachability diagram is constructed. To define the control torques realizing the rest-to-rest motion along the geodesic lines, a geometric phase-based approach has been employed and tested under simulation. Compared with the minimum effort optimal control, the proposed technique is less computationally expensive while providing similar system performance, and thus it is more suitable for real-time applications.

Keywords: rolling, spherical robot, motion planning


References: PDF file   HTML file

Bibliographic databases:

MSC: 70F25, 70E60, 70Q05
Received: 23.04.2018

Citation: Yang Bai, Mikhail Svinin, Motoji Yamamoto, “Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Regul. Chaotic Dyn., 23:4 (2018), 372–388

Citation in format AMSBIB
\by Yang Bai, Mikhail Svinin, Motoji Yamamoto
\paper Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 4
\pages 372--388

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. A. Tafrishi, Y. Bai, M. Svinin, E. Esmaeilzadeh, M. Yamamoto, “Inverse Dynamics-Based Motion Control of a Fluid-Actuated Rolling Robot”, Nelineinaya dinam., 15:4 (2019), 611–622  mathnet  crossref  elib
    2. Vakhtang Putkaradze, Stuart M. Rogers, “On the Normal Force and Static Friction Acting on a Rolling Ball Actuated by Internal Point Masses”, Regul. Chaotic Dyn., 24:2 (2019), 145–170  mathnet  crossref
    3. A. V. Borisov, A. V. Tsyganov, “Vliyanie effektov Barnetta-Londona i Einshteina-de Gaaza na dvizhenie negolonomnoi sfery Rausa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:4 (2019), 583–598  mathnet  crossref
    4. S. A. Tafrishi, M. Svinin, E. Esmaeilzadeh, M. Yamamoto, “Design, modeling, and motion analysis of a novel fluid actuated spherical rolling robot”, J. Mech. Robot., 11:4 (2019), 041010  crossref  mathscinet  isi  scopus
    5. Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706  mathnet  crossref  mathscinet
    6. A. V. Borisov, E. A. Mikishanina, “Dynamics of the Chaplygin Ball with Variable Parameters”, Nelineinaya dinam., 16:3 (2020), 453–462  mathnet  crossref  mathscinet
  • Number of views:
    This page:103

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021