|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot
Yang Baia, Mikhail Svininb, Motoji Yamamotoa a Mechanical Engineering Department, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
b College of Information Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
Аннотация:
This paper deals with the dynamics and motion planning for a spherical rolling robot with a pendulum actuated by two motors. First, kinematic and dynamic models for the rolling robot are introduced. In general, not all feasible kinematic trajectories of the rolling carrier are dynamically realizable. A notable exception is when the contact trajectories on the sphere and on the plane are geodesic lines. Based on this consideration, a motion planning strategy for complete reconfiguration of the rolling robot is proposed. The strategy consists of two trivial movements and a nontrivial maneuver that is based on tracing multiple spherical triangles. To compute the sizes and the number of triangles, a reachability diagram is constructed. To define the control torques realizing the rest-to-rest motion along the geodesic lines, a geometric phase-based approach has been employed and tested under simulation. Compared with the minimum effort optimal control, the proposed technique is less computationally expensive while providing similar system performance, and thus it is more suitable for real-time applications.
Ключевые слова:
rolling, spherical robot, motion planning
DOI:
https://doi.org/10.1134/S1560354718040020
Список литературы:
PDF файл
HTML файл
Реферативные базы данных:
Тип публикации:
Статья
MSC: 70F25, 70E60, 70Q05 Поступила в редакцию: 23.04.2018 Принята в печать:22.05.2018
Язык публикации: английский
Образец цитирования:
Yang Bai, Mikhail Svinin, Motoji Yamamoto, “Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Regul. Chaotic Dyn., 23:4 (2018), 372–388
Цитирование в формате AMSBIB
\RBibitem{BaiSviYam18}
\by Yang Bai, Mikhail Svinin, Motoji Yamamoto
\paper Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 4
\pages 372--388
\mathnet{http://mi.mathnet.ru/rcd329}
\crossref{https://doi.org/10.1134/S1560354718040020}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3836277}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000440806900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051132520}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/rcd329 http://mi.mathnet.ru/rus/rcd/v23/i4/p372
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
S. A. Tafrishi, Y. Bai, M. Svinin, E. Esmaeilzadeh, M. Yamamoto, “Inverse Dynamics-Based Motion Control of a Fluid-Actuated Rolling Robot”, Нелинейная динам., 15:4 (2019), 611–622
-
Vakhtang Putkaradze, Stuart M. Rogers, “On the Normal Force and Static Friction Acting on a Rolling Ball Actuated by Internal Point Masses”, Regul. Chaotic Dyn., 24:2 (2019), 145–170
-
А. В. Борисов, А. В. Цыганов, “Влияние эффектов Барнетта-Лондона и Эйнштейна-де Гааза на движение неголономной сферы Рауса”, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки, 29:4 (2019), 583–598
-
S. A. Tafrishi, M. Svinin, E. Esmaeilzadeh, M. Yamamoto, “Design, modeling, and motion analysis of a novel fluid actuated spherical rolling robot”, J. Mech. Robot., 11:4 (2019), 041010
-
Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706
-
A. V. Borisov, E. A. Mikishanina, “Dynamics of the Chaplygin Ball with Variable Parameters”, Нелинейная динам., 16:3 (2020), 453–462
|
Просмотров: |
Эта страница: | 103 | Литература: | 12 |
|