RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2015, Volume 20, Issue 6, Pages 627–648 (Mi rcd33)  

This article is cited in 4 scientific papers (total in 4 papers)

On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy

Boris S. Bardina, Victor Lancharesb

a Department of Theoretical Mechanics, Faculty of Applied Mathematics and Physics, Moscow Aviation Institute, Volokolamskoe sh. 4, Moscow, 125993 Russia
b Departamento de Matemáticas y Computación, CIME, Universidad de La Rioja, 26004 Logroño, Spain

Abstract: We deal with the stability problem of an equilibrium position of a periodic Hamiltonian system with one degree of freedom. We suppose the Hamiltonian is analytic in a small neighborhood of the equilibrium position, and the characteristic exponents of the linearized system have zero real part, i.e., a nonlinear analysis is necessary to study the stability in the sense of Lyapunov. In general, the stability character of the equilibrium depends on nonzero terms of the lowest order $N$ $(N>2)$ in the Hamiltonian normal form, and the stability problem can be solved by using known criteria.
We study the so-called degenerate cases, when terms of order higher than $N$ must be taken into account to solve the stability problem. For such degenerate cases, we establish general conditions for stability and instability. Besides, we apply these results to obtain new stability criteria for the cases of degeneracy, which appear in the presence of first, second, third and fourth order resonances.

Keywords: Hamiltonian systems, Lyapunov stability, stability theory, normal forms, KAM theory, Chetaev's function, resonance

Funding Agency Grant Number
Russian Science Foundation 14-21-00068
Ministry of Science and Innovation of Spanish MTM2011-28227-C0
MTM2014-59433-C2-2-P
The first author acknowledges financial support from the Russian Scientific Foundation (project No.14-21-00068 at the Moscow Aviation Institute (National Research University)). The second author acknowledges financial support from the Spanish Ministry of Science and Innovation (projects MTM2011-28227-C0 and MTM2014-59433-C2-2-P).


DOI: https://doi.org/10.1134/S1560354715060015

References: PDF file   HTML file

Bibliographic databases:

MSC: 34D20, 37C75, 37J4
Received: 08.09.2015
Accepted:05.10.2015
Language:

Citation: Boris S. Bardin, Victor Lanchares, “On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy”, Regul. Chaotic Dyn., 20:6 (2015), 627–648

Citation in format AMSBIB
\Bibitem{BarLan15}
\by Boris~S.~Bardin, Victor Lanchares
\paper On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 6
\pages 627--648
\mathnet{http://mi.mathnet.ru/rcd33}
\crossref{https://doi.org/10.1134/S1560354715060015}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3431180}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..627B}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000365809000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948964011}


Linking options:
  • http://mi.mathnet.ru/eng/rcd33
  • http://mi.mathnet.ru/eng/rcd/v20/i6/p627

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Rodrigo Gutierrez, Claudio Vidal, “Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case”, Regul. Chaotic Dyn., 22:7 (2017), 880–892  mathnet  crossref
    2. B. S. Bardin, “On the stability of a periodic Hamiltonian system with one degree of freedom in a transcendental case”, Dokl. Math., 97:2 (2018), 161–163  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
    3. N. Xue, X. Li, “The linearization of periodic Hamiltonian systems with one degree of freedom under the Diophantine condition”, J. Differ. Equ., 264:2 (2018), 604–623  crossref  mathscinet  zmath  isi  scopus
    4. Boris S. Bardin, Víctor Lanchares, “Stability of a One-degree-of-freedom Canonical System in the Case of Zero Quadratic and Cubic Part of a Hamiltonian”, Regul. Chaotic Dyn., 25:3 (2020), 237–249  mathnet  crossref  mathscinet
  • Number of views:
    This page:105
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021