Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2018, Volume 23, Issue 4, Pages 418–437 (Mi rcd331)  

This article is cited in 1 scientific paper (total in 1 paper)

Heisenberg Model in Pseudo-Euclidean Spaces II

Božidar Jovanovića, Vladimir Jovanovićb

a Mathematical Institute SANU, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000, Belgrade, Serbia
b Faculty of Sciences, University of Banja Luka, Mladena Stojanovića 2, 51000, Banja Luka, Bosnia and Herzegovina

Abstract: In the review we describe a relation between the Heisenberg spin chain model on pseudospheres and light-like cones in pseudo-Euclidean spaces and virtual billiards. A geometrical interpretation of the integrals associated to a family of confocal quadrics is given, analogous to Moserís geometrical interpretation of the integrals of the Neumann system on the sphere.

Keywords: discrete systems with constraints, contact integrability, billiards, Neumann and Heisenberg systems

Funding Agency Grant Number
Serbian Ministry of Science and Technological Development 174020
The research of B. J. was supported by the Serbian Ministry of Science Project 174020, Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems.


DOI: https://doi.org/10.1134/S1560354718040044

References: PDF file   HTML file

Bibliographic databases:

MSC: 70H06, 37J35, 37J55, 70H45
Received: 20.09.2017
Accepted:28.05.2018
Language:

Citation: Božidar Jovanović, Vladimir Jovanović, “Heisenberg Model in Pseudo-Euclidean Spaces II”, Regul. Chaotic Dyn., 23:4 (2018), 418–437

Citation in format AMSBIB
\Bibitem{JovJov18}
\by Bo{\v z}idar Jovanovi{\'c}, Vladimir Jovanovi{\'c}
\paper Heisenberg Model in Pseudo-Euclidean Spaces II
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 4
\pages 418--437
\mathnet{http://mi.mathnet.ru/rcd331}
\crossref{https://doi.org/10.1134/S1560354718040044}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3836279}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000440806900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051135070}


Linking options:
  • http://mi.mathnet.ru/eng/rcd331
  • http://mi.mathnet.ru/eng/rcd/v23/i4/p418

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. Božidar Jovanović, Yuri N. Fedorov, “Discrete Geodesic Flows on Stiefel Manifolds”, Proc. Steklov Inst. Math., 310 (2020), 163–174  mathnet  crossref  crossref  isi  elib
  • Number of views:
    This page:217
    References:9

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022