RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regul. Chaotic Dyn., 2018, том 23, выпуск 4, страницы 438–457 (Mi rcd332)  

Heteroclinic Transition Motions in Periodic Perturbations of Conservative Systems with an Application to Forced Rigid Body Dynamics

Kazuyuki Yagasaki

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Аннотация: We consider periodic perturbations of conservative systems. The unperturbed systems are assumed to have two nonhyperbolic equilibria connected by a heteroclinic orbit on each level set of conservative quantities. These equilibria construct two normally hyperbolic invariant manifolds in the unperturbed phase space, and by invariant manifold theory there exist two normally hyperbolic, locally invariant manifolds in the perturbed phase space. We extend Melnikov’s method to give a condition under which the stable and unstable manifolds of these locally invariant manifolds intersect transversely. Moreover, when the locally invariant manifolds consist of nonhyperbolic periodic orbits, we show that there can exist heteroclinic orbits connecting periodic orbits near the unperturbed equilibria on distinct level sets. This behavior can occur even when the two unperturbed equilibria on each level set coincide and have a homoclinic orbit. In addition, it yields transition motions between neighborhoods of very distant periodic orbits, which are similar to Arnold diffusion for three or more degree of freedom Hamiltonian systems possessing a sequence of heteroclinic orbits to invariant tori, if there exists a sequence of heteroclinic orbits connecting periodic orbits successively.We illustrate our theory for rotational motions of a periodically forced rigid body. Numerical computations to support the theoretical results are also given.

Ключевые слова: heteroclinic motion, transition motion, chaos, conservative system, Melnikov method, rigid body

Финансовая поддержка Номер гранта
Japan Society for the Promotion of Science 25400168
This work was partially supported by the Japan Society for the Promotion of Science, Grantin-Aid for Scientific Research (C) (Subject No. 25400168).


DOI: https://doi.org/10.1134/S1560354718040056

Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 37C29,34C37,70K44,34E10,70E20
Поступила в редакцию: 29.01.2018
Принята в печать:17.04.2018
Язык публикации: английский

Образец цитирования: Kazuyuki Yagasaki, “Heteroclinic Transition Motions in Periodic Perturbations of Conservative Systems with an Application to Forced Rigid Body Dynamics”, Regul. Chaotic Dyn., 23:4 (2018), 438–457

Цитирование в формате AMSBIB
\RBibitem{Yag18}
\by Kazuyuki Yagasaki
\paper Heteroclinic Transition Motions in Periodic Perturbations of Conservative Systems with an Application to Forced Rigid Body Dynamics
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 4
\pages 438--457
\mathnet{http://mi.mathnet.ru/rcd332}
\crossref{https://doi.org/10.1134/S1560354718040056}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3836280}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000440806900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051133706}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/rcd332
  • http://mi.mathnet.ru/rus/rcd/v23/i4/p438

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:55
    Литература:7
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020