RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regul. Chaotic Dyn., 2018, том 23, выпуск 7-8, страницы 803–820 (Mi rcd368)  

Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body

Alexey V. Borisovab, Sergey P. Kuznetsovbc

a Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
b Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
c Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, ul. Zelenaya 38, Saratov, 410019 Russia

Аннотация: This paper addresses the problem of a rigid body moving on a plane (a platform) whose motion is initiated by oscillations of a point mass relative to the body in the presence of the viscous friction force applied at a fixed point of the platform and having in one direction a small (or even zero) value and a large value in the transverse direction. This problem is analogous to that of a Chaplygin sleigh when the nonholonomic constraint prohibiting motions of the fixed point on the platform across the direction prescribed on it is replaced by viscous friction. We present numerical results which confirm correspondence between the phenomenology of complex dynamics of the model with a nonholonomic constraint and a system with viscous friction — phase portraits of attractors, bifurcation diagram, and Lyapunov exponents. In particular, we show the possibility of the platform’s motion being accelerated by oscillations of the internal mass, although, in contrast to the nonholonomic model, the effect of acceleration tends to saturation. We also show the possibility of chaotic dynamics related to strange attractors of equations for generalized velocities, which is accompanied by a two-dimensional random walk of the platform in a laboratory reference system. The results obtained may be of interest to applications in the context of the problem of developing robotic mechanisms for motion in a fluid under the action of the motions of internal masses.

Ключевые слова: Chaplygin sleigh, friction, parametric oscillator, strange attractor, Lyapunov exponents, chaotic dynamics, fish-like robot

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 18-08-00999-a
18-29-10051-mk
Российский научный фонд 15-12-20035
The work of A.V. Borisov (Introduction and formulation of the equations of motion (Section 1)) was supported by the RFBR under grants No. 18-08-00999-a and 18-29-10051-mk. Numerical simulation and analysis of the results obtained (Sections 2–6) were carried out by A.V. Borisov and S.P. Kuznetsov within the framework of the RSF grant No. 15-12-20035.


DOI: https://doi.org/10.1134/S1560354718070018

Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 37C10, 34D45, 37E30, 34C60, 37J60
Поступила в редакцию: 30.10.2018
Принята в печать:28.11.2018
Язык публикации: английский

Образец цитирования: Alexey V. Borisov, Sergey P. Kuznetsov, “Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body”, Regul. Chaotic Dyn., 23:7-8 (2018), 803–820

Цитирование в формате AMSBIB
\RBibitem{BorKuz18}
\by Alexey V. Borisov, Sergey P. Kuznetsov
\paper Comparing Dynamics Initiated by an Attached Oscillating Particle for the Nonholonomic Model of a Chaplygin Sleigh and for a Model with Strong Transverse and Weak Longitudinal Viscous Friction Applied at a Fixed Point on the Body
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 7-8
\pages 803--820
\mathnet{http://mi.mathnet.ru/rcd368}
\crossref{https://doi.org/10.1134/S1560354718070018}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000458183900001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85061226885}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/rcd368
  • http://mi.mathnet.ru/rus/rcd/v23/i7/p803

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:40
    Литература:9
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019